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Vlasov-Poisson Equations

e One-dimensional Vlasov-Poisson equations

of  Of of
ot T Var Bt =0
32 o0 a¢
= h= _ =27
5,20 = b(2) . f(z,v,t)dv, o
f(z,v,t) — density of electrons at location z traveling with

velocity v at time ¢
E(x,t) — electric field
¢(x,t) — electric potential

b(x) — fixed charged background

Weak solutions for the 1D Vlasov-Poisson equations Dongming Wei FRG Workshop, Maryland



2D Euler equations with non-negative vorticity

e Incompressible 2D Euler equations

Dv
Di VP

divv = 0
e Vorticity-stream form

9,
8—CZ+V°VUJ:O
divv = 0

curlv = w

e Analogy between the 2D Euler and 1D Vlasov-Poisson equaiton

g+u.Vf:O, u=(v,—FE(z,1))

ot
divu = 0
curlu= [~ f(z,v,t)dv — 2
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Electron Sheet Initial Data

e Smooth electron sheet initial data

C(a,0) = (z(a,0),v(a,0)) = (e, g(ev))

F(e.0,0) = h(@)] D5 (@,0) - €. 0)

e §((z,v) — C(a)) — a surface measure supported on the curve

/_O; /_O;w(ﬂ?,v)(S((x,v) — C(a))dvdz = Lb¢(a,g(a)) dC(«

o local density p(z,t) = [ f(z,v,t)dv

p(a,0) = h(a)
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Weak solution of the Vlasov-Poisson equation (MMZ94)
e (E,f): f non-negative measure f(x,v,t), (E,f) is 1-periodic in x

1. f(x,v,t) is a probability measure for each t > 0, i.e.,

/o1 /_O:O f(z,v,t)dvdr = 1

2. (E,f) satisfies the Poisson equation in the distributional sense,
E,=1-— ffooo fdv, and the normalizing condition is compatible with

1
Condition 1, / E.dx =0
0

3. (E.f) satisfies the Vlasov equation in the weak form: E = 2(E;+E,)

/OT /01/_O;(¢tf+¢mvf)dvd:cdt—/OT/OlE(/_O; Yy fdv)dzdt = 0
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Plan of this talk

e Exact weak solution of the Vlasov-Poisson equaiton

— critical threshold

e \Weak solution afther the critical time

— multi-valued solution to the Euler-Poisson equation

e A novel algorithm and numerical examples
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Exact Weak Solution

An electron sheet defined by

Cla,t) = (x(a,t),v(a, t)),
r(a,t) = g(a)sint + (a — H(a)) cost + H(a),

v(a,t) = g(a)cost — (o — H(a))sint,

dC'(a,t
do

F(x,0,1) = h(oz)‘ )‘_15((x,v) — C(a, 1)),

E(a,t) := E(x(a,t),t) = x(a,t) — H(a).

Dziurzynski 87 (x = o, h(a) = 1)
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Construction of Weaksolution
e Method of Characteristics

dr(a,t)
dt

dv(a,t)
T —FE(x(a,t),t)

E(az,t):/ox (1—/_O:Of(y,v,t)dv)dy

= v(a, t)

o M(z,t) := /Of’f /_OO fly,v,t)dvdy, M(z(a,t),t) = M (x(ca,0),0)

— Constant, as long as C(a;,t) is a graph
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Method of Characteristics

e Equation for z(a,t),v(a,t)

= v(a, t)

dv(a,t)
dt
e Equation of the local density p

o) — GM(xa(j,t),t)

= —M(a,t) + xz(a, t)

AM _OM oM
dt Ot ox

0p dp Ov
§+Uﬁa}+8azp_0
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Weak solution — Method of Characteristics

dp Ov
at T os" "
ov(a,t) 87}(04,15)/337
or Oa ! da
ov  Ol'(a,1) Oz
_ P, 0) )
p(Cl{,t) T P(Oé, )F(O{,O) F(Oz,t)

D5 (@,0) — e )

fw,v,1) = ha)| ==

Engelberg, Liu, Tadmor, 2001 (Euler-Poisson)
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Critical Threshold

e Will the momentum of this weak solution blow up in finite time?

—plont) = F}ESZ)
— I'(a,t) := O g (a)sint + (1 — h(a)) cost + h(a)

a—a{ o
— if I'(«, t) remains positive

e Critical threshold
— (¢'(@)” <2h(a) -1,  VYae0,1]

e Agrees with Engelberg, Liu, Tadmor, 2001 (Euler-Poisson Critical
Threshold)
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Example: concentration in charge

Vlasov-Poisson with electron sheet initial data:

N— =

o) o

gla) =< 2 —a 1<a<
1
O (8 B

Weak solution
r(a,t) = gla)sint + «
v(a,t) = g(a) cost
Valid for 0 <t < 3, at the critical time t* = 7,

1 11
r(a,t) = 1 v(a,t) =0, for te [1,5]
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Two-component Vlasov-Poisson equation

(of , Of of—
-y v —E@t) =0
Of+ 3f+ of+
| (‘9t+ O + Bz, )(% =0
0” ”
\ @ﬁb:/_w(ﬁr—f)(x,v,t)dq), E:%

— f1 and f_, the density of positively charged ions and electrons
— ¢ is the electric potential

— F i1s the electric field
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Two-component Vlasov-Poisson equation
e Simplest stationary weak solution

— a uniform electron sheet and a uniform ion sheet

f-(z,v,0) = d((z,v)
f_|_(£U,U,O) ((SIZ,U)

0
0

e Impose small density and velocity perturbations
— Weak solution by method of characteristics

— Weak solution is valid at least for a short time T" > 0
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Two-component Vlasov-Poisson equation

e Moments of the two-component Vlasov-Poisson equations

op_ 0

a a—ta—l_ %(p_u_) = (
- - 2 — —
5 (P-U-) :; ax(p—;_) p-E=—p_ ¢,
9Py, 9 _
5 T 8:1:(’0+u+) 0
o) +5opid) = piE = pyo
It P+U+ 97 P+Uy) = P+ = PPz
Pz = P+ — P—

e Finite time blow up — an example

— [-(z,v,0) = f1(z,v,0), u_(z,t) = uy(z,t), p_(2,t) =
:0—|—(337t>
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Solution after critical time

e Moments of the weak solution

v(a,t)+e
p(()é,t) = lim f(CC,’U,t)d’U, U(Oz,t) — ’U(O{,t)

e Multi-valued solution to Euler-Poisson
e Method of characteristics

e Choose the parameter «
Va € |0,1], find z such that / po(z)dr =, then x(a,0) =2
0

M(a,0) = M(a,t) = «
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Electric Field

Without concentration

—0.2}+ ]
—0.4 —
—0.6 ]
—0.8}+ ]

\ v
-1 ]
I I I I I I I I I
(o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x

Figl. x(a,t)=x(3,t)=x(y,t), then by (4.4), E(a,t)=x(a,t)—(a+y—3).
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Electric Field

With concentration:

E(a.t) = z(a.t) — /O Xfonon) @(8:0)d5 - |20 {6 < a}

x(0,t) =z if and only if 6 € Q

o 011 012 013 014 oi5 016 oi7 018 oig 1
Fig.2 x((ao,t)=x((3,t), E(a,t) =x(a,t)—a, E(B,)=x(B,H)—3
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Multi-valued solution

e Euler-Poisson

or —1
[)(O&,t) — ‘8_&
e Vlasov-Poisson
1
— initial data: f(x,v,0) = h(oz)‘dCC(ZZ’ O)‘ 0((z,v) — C(a,0))
hia) =1
— weak solution

D5 (0) — Clan)

flw,v,t) = ‘ dox
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Charge Index

e Initial data

C(s,0) = (x(s,()),v(s,())),

dC'(s,0)

o |_ 5((:6,1)) — C(S,O))

f(ZIZ', v, O) — h(S)‘

— h(s) could be 0 or a delta function

e Change index
p
s(a) = min{p| / h(y)dy > o}
0

e Example: charge concentration initial data
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Zero diffusion limit of the Fokker-Planck

e Fokker-Planck equation as a regularization to the Vlasov-Poisson

equation
Ofm Ofm . @fn_ 52 fn
o TVar T E @G =g
52 > D"
S — _ n n — _r
2 36 =b(a) / Pt B =

e ) — 0, weak solution of the Vlasov-Poisson?
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Example — Continuous fission solution

e Vlasov-Poisson equation with concentrated electron sheet initial data

f(z,v,0) =d(x — 5)5(7})7

1

l.e., all the charge concentrates on x = 5 with velocity 0 at t=0

e With charge index «

1
r(a,0) = > v(a,0) =0, FEa,t)=a.

e Solving equations

dr(a,t)
dt

— o(at), d”(d();’t) — _E(z(a,b). 1),
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Example — Continuous fission solution

e Obtain the weak solution
1
r(a,t) = a+ (5 — ) cos t,

1

v(z(a,t),t) = (o — 5) sin t,
f (e 1), (e ), 1) = - _160875.

e Continuous fission weak solution

e Zero diffusion limit of the Fokker-Planck equation

Majda, Majda, & Zheng 1994
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A novel algorithm for 1D Euler-Poisson
Step 1. Establish the “charge index” according to the initial data.

Step 2. Input space step size Ah = 1/N and time step size At.
Step 3. Input initial values (x(ag,0), u(ak,0)), here ap, = k/N.
Step 4. for i from 1 to T'/At do
Step 5. Update x(a,t + At) and u(a,t + At)
dx dv
Fr T
Step 6. Update F(a,t + At)
Step 7. Construct p(a,t + At) by the following formula

E k+1 1

€ (—, T+ AL) =
p(a (N N] ) Nl|z(£, t + At) — z(BH ¢ + At)]

— L.

Step 8. end
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Moment system for multi-valued solutions
e Moments of the Vlasov-Poisson equations
my = [ f(z,v,t)v!dv, 1=0,1,---,2K.

e Moment equations in the physical space

o o

ot ° et T

0 0

aml + %WQ = —mp0z¢),
9 D ok = —(2K —1) Db
6tm2K_1 axmgK = MoK —20z@,

&m¢ = 11— 2521 Pk -
e Second order kinetic scheme
Jin & Li, 2003
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Numerical Examples

e Solutions to Euler-Poisson, Fokker-Planck, and Moment equations
Initial data: po(x) =1, wug(x) =sin(2rx), fo=0(v — up(x))
Solution becomes multivalued at ¢t* = 0.1598, we calculate t = 0.5
Charge Index: Ax = 1—30, At = %
Fokker-Planck: 8192 particles, At = 0.002, € =0.01

T T
—— Fokker—Planck
—— Charge index
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Numerical Examples

e Solution to the moment equations

ons: _ 1 _ Az
Moment equations: Ax = 455, Al ==

RSeLiio

1
2
3

u
u
u
Fokker—Planck
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Numerical Examples
Initial data: po(x) =1, wug(x) =sin(2rx), fo=90(v — up(x))
Solution becomes multivalued at t* = 0.1598, we calculate ¢ = 0.5

Charge Index: Ax = 4—(1)(), At = %

Fokker-Planck: 8192 particles, At = 0.002, ¢ =0.01

5

4.5

=

3.5

3+

25

o

1.5

or —— Fokker—Planck
—— Charge Index
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Numerical Examples
Fokker-Planck: 8192 particles, At = 0.002, ¢ =0.01

Moments equations: Az = &=, At =42
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Numerical Examples
Initial data: po(x) =1, wug(x) =sin(2rx), fo=90(v — up(x))
Solution becomes multivalued at t* = 0.1598, we calculate ¢ = 0.5

Charge Index: Ax = Kloﬂ At = %

Fokker-Planck: 8192 particles, At = 0.002, ¢ =0.01

T T
—— Fokker—Planck
—— Charge Index
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Numerical Examples
Fokker-Planck

T T
—— Fokker—Planck |
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Numerical Examples
Fokker-Planck: 8192 particles, At = 0.002, ¢ =0.01

. ) - Az
Moments equations: Ax = 100" At = =

T T
—— moment
—— Fokker—Planck
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End

Thank You !
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