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The particle model.
Kinetic description.
Equilibrium, phase transition.

Results:
» Stability for V-B and V-F-P InR;
» Instability for V-B in R.

Joint works with Yan Guo and Rossana Mairra:
Arch. Rat . Mech. Anal . 195, 75- 116 (2010),
Commun. Mat h. Phys. 296, 1- 33 (2010).

Work in progress in a finite interval.




Model introduced by Bastea and Lebowitz (1997).
System ofV; redandN; bluehard spheres of radius= 1 with

unit mass inA ¢ R3.
Interactions:

# elastic collisions (color blind);

#® |ong range Kac-type interaction between red and blue
particles with a two body potential:

]

de(r) = AU (7> . U(r)=0 forr > 1.

U I1s assumed@mooth, non negative, decreasing and normalized
(J dzU(]z|) = 1) and A, — 0 as¢ — oo suitably.



Al = O(%)
Al
(N1 —+ NQ)CL2.

Mean free path\ =

v = % fixed.

Ay = 73a2)\_2 = O(Nl + NQ).
Note thatN; + Ny = O(¢?), low density.

By scaling space and time variables (wih') and taking the
formal limit in the BBGKY hierarchy one gets the kinetic
equations below.

BUBIAIRG : The analog of Lanford theorem is not been proved.



Of' +v -V + F'U-Voft =B Y+ B 1),
O f? +v-Vaf?+ F2[f']-Vof?=B(f% )+ B(f*, ),
1 = fredand 2 = fPve probability distribution functions on
the phase spade x R3, Q = \7TA;

Self-consistent forceB™[f?], F?[f1]:

Filfl(z.t) = -V, |

iUl — ) [ dofia ), it
Q

R3

Collisions:

Bfg) = [ dee | el lf 0o~



Why not just one species?

The interesting case for phase transitions, with one spgsie
the attractive onet/ (r) < 0.

In order to have thermodynamic stability one needs to keep th
hard core size finite on the kinetic scale.

Not compatible with the Grad-Boltzmann limit.



No elastic collisionssystem in contact with a thermal bath at
Inverse temperaturé > 0, modeled by white noise force added
to the deterministic evolution with long range interaction
Standard mean field arguments: limiting system

Ouf' +v-Vaof' + F'[f?]-Vof' = Lf,

Oif* +v-Vaf+ F2[f']-Vof? = Lf?,

=5 (1)) e 2







Sl 1) = [ do [ doge? @) + o)
R3

2
o) = [ defiGa.o)

L2y = X Uiﬂjvniﬂfv.
Ha(f 1) = 3 [ do [ dopia)n i

i=1,2



The functionalF&" is non increasing for any > 0 under the
V-B dynamics and fop given by the thermal bath inverse
temperature for the V-F-P evolution.

Entropy-energy competition.
# Jsmall: entropy dominates. Disordered state.
#® [ large: energy dominates. Segregated states.



Equilibrium solutions (both V-B and V-F-P):
(@, v) = pr(z)pp(v), f2(z,v) = pa(x)ug(v),
Bl n(a) + [ dU(le = Ppale’) = Co,

5V n o) + /Q 42Uz — /) (') = Ca.

Euler-Lagrange equations for thgatial free energy functional

Falpt, p2] = B~ /d$m (z) In p1(x) + p2(z) In pa ()]

+ [ do [ da'U(e =@l



Homogeneous minimizers: minimizers of the local free eperg

o(p1,p2) = B [p11np1 + paln pa] + p1p2

Indeed,

Falpi, p2] = /dw(m( ), p2(z))
/ i1 / 42U (jz — ) (1 () — p1 (&) (p2(e’) — pa(a).

By rearrangement arguments (ecreasing) the non local term
IS non negative on minimizers, so minimizers are spatially
homogeneous as much as they can.



P1 — P2
P

Setp = p1 + p2;m =

) 1
e(p1,p2) = B~ pInp+ 2p* + p fp(m)

m2

folm) = ="+ (p8) ™"

1 1
L T

l—m. 1—m 1+m 1—|—m}

Graph of m — f,(m) for p8 > 2.



The critical points forf have to solve

m = tanh(om),

with o = %pﬁ

® If 0 <1: m = 01isthe only solution.

#® If ¢ > 1: againm = 0 solution;
Moreover
34m, > 0 such thatn = +m, 1S solution.

Setp® := ip(1 + m%pﬁ).



Therefore:
PEEF]: ' = 0: Miminizer of ¢: p1 = ps (mixed phase).

EER

® Minimizer: p1 = p™, po = p~, (red rich phasg

# Minimizer: p; = p—, p2 = pT, (blue rich phasg

Note: the minimizing total density is always unique.



Conservation of masses—=- Minimizers with the constraints
—1 d ( ) = 1.2
’Ql Q IOZ () Y

n; given by the initial conditions.
If <p™n; <p’,i=1,2 non homogeneous minimizers ,
regionsblue richandred richseparated by interfaces.

Assumel? a torus of sizd..
From rearrangement arguments (usthghonotone), forl

sufficiently large, the minimizers a symmetric monotone With
values close tp™ andp™~ in regions separated by a

small interface [Carlen, Carvalho, R.E., Lebowitz, Marra,
Nonlinearity 16, 1075-1105 (2003)].



Q=R.Fix[p=2 — o = §, Critical pointj, = 1.

For 5 < 1. the only possible equilibrium is the homogeneous
mixed phase, with; = po = 1.

For 5 > 1. three homogeneous states: the mixed ones po,
theredrich phasey = 1 4+ mg, p2 = 1 — mg and thebluerich
phasey; = 1 —mg, p2 = 1+ mg.

For 5 > 1, non spatially homogeneous solutions (phase
coexistence) by forcing the asymptotic valuegtoat Foo:
Two half-lines ofred richandblue richphases separated by an

Interface of finite size.



Define

X o=, <0 X ot <0
pi(x) = { p2(x) = { _ -

o, x>0 p~, >0

Excess free energy

AN

Flp1,p2] = lim []:(—e,e) o1, p2] = F(—ep) [ﬁl,ﬁzﬂ-

{—00

Remark:
Flp1, p2] is not finite Ifxgrinoopl + p— or xll)lrinoopz + pT.



Theorem [Carlen, Carvalho, R.E., Lebowitz, Marra;
ARMA 194, 823-847 (2009)]

Let 5 > 1. There is a unique (up to translations) minimizer to the
excess free energy F. Let p = (p1, p2) be the one such that

p1(0) = p2(0).

® pissmooth; p~ < pi(z) < pt, i=1,2;
® pjisincreasing and p2 is decreasing;

9 ﬁ_llnﬁl+U*ﬁg:Czﬁ_llnﬁz—l—U*m;



Moreover

® 7o+ iU py=0=p""ph+ prU *

® pi(z) = pa(—x), py(z) = —pp(—x);
® da>0:

p1(z) — p=le®*l = 0, & — Foo;
5o(z) — pFle®l 50, z— +o0.






Question: Are the equilibrium states stable w.r.t. pewtidns
of the initial conditions in the time evolutions V-B and VH2
Expected answer: Minimizers are stable, maximizers are
unstable.

Results: Cas@ = R;

#® V-F-P evolution: asymptotic stability of the minimizers.

#® V-B evolution: stability of the minimizers, instability dhe
maximizer.

Open problems:

# Instability of the maximizer for V-F-P and asymptotic
stability of the minimizers for V-B.

® (= |—L, L], periodic b.c.,L large enough.



Main problem: the force cannot be small: small foree> no
phase transition.

For small force, convergence to equilibrium and rate byaviil

This would cover the high temperature regime.
For low temperatures, multiple equilibrium states.

Difficult case: front. Homogeneous minimizers are simpler.
Assumef(z,v) = pi(z)pg(v) + hi(z,v,0), z € R, v € R?.
Defineh;(x,v,t) := f'(x,v,t) — pi(z)pg(v).



Equations for;:

Oih; + G;h; = Lh; — F; [h]avxhi;
Gih; = v.0:h; — (U * ﬁ})avxhz

—|—(U>|<8w /R3 dvhj(-,v,t))ﬁvaﬁi

Norms:|| - || denotes the.*(R x R?) with weight (p; )~

172 =3 AXR3dwdv %2)

1=1,2




Null space ofL: kern(L) = {(u1, u2) = (a118, a2pi) }-
P projector on kerfiL), P+ =1 — P; 9 = (0., 0;).
Dissipation normi|f||3, = || P1f||? + ||V, P+ £]2.
Weighted norms:

oy =(L+12P), Iflly =l fl 1oy =I5 fllp
Symmetry: Assume(x,v,0) = ho(—x, Rv,0) with
Rv = (—vg, vy, vz).

Note that this is the same symmetry of the front.
The symmetry is preserved in time.



Theorem [ARMA 195,75-116 (2010)frhereis 6 > 0 s.t. if
|A(-,0)]| + ||Oh(-,0)] < 0, then there is a unique global solution
to the equation for h. Moreover there is /X > 0 such that

L (11 + 19n () + 0:h(0))
FE (IO + 19RO + [2:0(1)]3) <0

If, for v > 0 sufficiently small, ||h(-,0)||, + ||Oh( -, 0)”v+% <0
then the same norms are bounded at any time by the initial data and

we have the decay estimate

RO + [9h) |2 < C[1+ 3] [IBOIE + 9rO) 1 ]



Spectral gap foL: there isyy > 0 s.t.

(9, Lg) < —wo||PHg|/%.

This is used to contraP-A(t). Control P h(t) = (g1, gaii5):

(Ag)1 = 5_1% +Ux*g2, (Ag)2= ﬁ_1% + U * g7 .

Note that
a2 .

(9, Ag) = 25 F (P +59)| .y -




e operatord has a null space kefA a(py, Py et’p
is the projector on keil) andP+ = 1 — P. (Transl. invar.)

Spectral gap foA: there is\ > 0 s.t.
(9,Ag) = M(P~g,Ptg).

The component ok(t) in kern(A) is not under control. The
symmetry condition ensures thiat) is orthogonal to kerfA).
Lower bound for|(Au)’||: There isC > 0 such that

|(Au)'[* = CllQu'||* .

whereQ is the orthogonal projection on the orthogonal
complement op”.



# The same results hold for the mixed phase above the critical
temperature.

# \We do not have the instability of the mixed phase below the
critical temperature. The construction of the growing mode

presented below for V-B, falils for V-F-P because of the

unboundedness of the F-P operator



Theorem [CMP 296,1-33 (2010)]:Assume p = 2.
® (3 < 1: The unique equilibrium ( f1, f2) = (ug, i) is stable.

o 5>1:
# the homogeneous equilibrium states

(f1, f2) = (P pg, p~pg) and (f1, f2) = (0~ pg, P pg)
are stable;

» the equilibrium (1, f2) = (p*(z)ug, p*(x)ug) is stable
w.r.t. symmetric perturbations;
» the homogeneous equilibrium ( f1, f2) = (ug, pug) is
unstable.
Here stability and instability are ih> (R x R?) and in
H(R x R?). Symmetric perturbation means again
hi(z,v) = ha(—2z, Rv), whereRv = (—vg, vy, v,).




#® No convergence to the equilibrium is stated . This has to

be compared with the Vlasov-Fokker-Plank case where
there is an algebraic rate of convergende.instability
result for VFR

# In order to have phase transitiorfforce not small.

Treating the force terms as perturbations does not work.

Strategy based on entropy-energy argumebtsestimates
promoted tal°° by analysis of the characteristics. Crucial
step:spectral gagor the second derivative of the free

energy. _
#® The instablility is based on the construction of a

perturbation arguments and persistence of the gorwing
mode at non linear level.




Given the equilibrium stateV/y, Ma) = (p1us, p2145), let

g = (91, 92) with g; = fz\/_ﬁM?’ be the deviation from the

equilibrium. Define:M;(g) = [, dz [ns duv/M;gi(x, v),
2
H(g) = Z/dx/dv {filogfi_Mz’lOgMi}a
i=1 VR

€(9) iédm/dv?};gi\/ﬁi

T / dadyU(z = y]) (o (o5, (9) = ()2 v) ),

pp. = [ dvfi(w,v).




The free energy functional is

Flg) = H(g) + ele) — (C+1+10g (1) )ZM

The free energy functional does not increase:
F(g(t)) < F(g(0)) for anyt > 0.
Quadratic approximation. The coefficients have been chtmsen
cancel the linear part.

For somef; = af; + (1 — a)M;, a € (0,1):

(fi(t) — My)?
Z/dx/Rg dv 2fz
W / I / WU (|2 — ) (o, (1, 2) — pr(2))(pr, () — pa(y)).




Lemma. If u; = py, — p; s.t. P(u1,u2) = 0, then there are o > 0
and ~ sufficiently small so that

(filt) — M;)?
a Z /Rdx /]Rf” dv{ M L f6)— My <k

i=1,2 ¢

+ | fi(t) — Mil{fi(t)Mi>/@Mi}} < F(g(0)).

Remark: It is crucial that the initial perturbation is orthogonal to
the null space ofd. This is trivial for the spatially homogeneous
equilibrium, while it is ensured by the symmetry conditian f

the phase coexisting equilibrium.



Theorem: Let w(v) = (X + |v]?)7, with ¥ sufficiently large and

v > 3.1 lwg(0) |l + /F(g(0)) < & for § sufficiently small, then
there is 1y > such that

1

lwg(To) oo < 5 lwg(0)lloo + Crp v/ F(g(0)).

The stability follows by iteration on the time interval.



ldea: Without collisions there IS a growing mode.
Collisions do not destroy the growing mode.
The linearization of the equation for the perturbation is:

Org + Lg =0,
'Notation : . = :5; ¢ first component of the velocity = (¢, ¢),

(Lg)i = £0egi — BF(\V/1giv1)E/ 1 — aLig,

o = 1andLig = % (B(/Hgi.20) + Bl /i1 + 2)))

Seek for a growing mode of the form

gl(t 2 S C) = € elkm (£7<)7 gQ(t L f C) — € te—lkx (_£7<)




{\ +ifk}q — BEiU (k) { /R 3 q\/ﬁdv} &/t —aLg = 0.

Proposition 1: Let 5 > 1. There exists sufficiently small & > 0 such
that there is an eigenfunction ¢(v) and the eigenvalue A with e\ > 0.
Proof. First assumer = 0. X is found by O. Penrose criterion,

U (k)k*u(v)

dv = 1.
w MR

B

Indeed, sinceg?U (0) > 1, by continuity there igq > 0 such that
BU (ky) > 1 and hence a > 0 so that this is satisfied.

Use Kato perturbation theorem to extenaito- 0 small.



Proposition 2. Let ag be the supremum of the &’s such that
Proposition 1 is true. Then ag = +00.

Proof. Indeed, ifay < oo then,A\g = limg_q, Ao EXIStS (UP tO
subsequences) and is a purely imaginary eigenvalue. ltean b
shown that the corresponding eigenfunction must be In tlle nu
space ofL, and this implies\ = 0. Moreover, collisions
disappear for such an eigenfunction and we can use again the

Penrose criterion which impliesl/ (ko) = 1. This is in
contradiction with the definition of.
This provides a linear growing mode for any> 0.

Remark: It is crucial thatL is a bounded perturbation. It does
not work with the Fokker-Plank operator which is unbounded.

'Non linear analysis. Bootstrap argume Very technical.



Theorem. Assume (3 > 1. There exist constants kg > 0,6 > 0,
C' > 0, ¢ > 0 and a family of initial Zk—Z—periodic data

£2(0) = p + /1g? (0) > 0, with g°(0) satisfying

[Vz£9° ()12 + wg® (0) | = < €3,
for § sufficiently small, but the solution ¢°(¢) satisfies

sup [lwg® ()|~ > ¢ sup [g°(t)]|z2 = cf > 0.
0<t<T? 0<t<T?

Here the escape time is 7° = % In %,
Note that the growing mode Is symmetric.

The instability does not depend on the absence of symmetry.



# Finite volume,1d torus(with Y. Guo and R. Marra)

Stability of the non constant minimizer “double front”)
A

® Operatord on L*(Ty,), Ty, the 1-d torus of sizé.
Derivative of the front is in the nullNull space? Spectral

gap?



/)

as anegative eigenvaludndeed, letv = (w1, w2) be a front
on the torus such thatw’ = 0. Definew = (|w}|, —|w|)

wi wj

= U Jwh) + Jwh| (= — U * i)

2
w1 w2

(mAmw=/|mu
1T

L 0
:—2/ w’lU*(]w’Ql—l—w’Q)—Q/ whU * (Jwy| +wy) < 0
0 —L

We have used the E-L equations

/ /
w w
w1 w2

Show that themass constrairKills the negative eigenvalue.



Spectral gap true faanti-symmetriqby reflection) functions.

Problem on the torus faymmetricfunctions reduced to the
case of Neumann boundary conditions @h L|:

(Ag)1 = B "L 1 Uwgy, (Ag)a=p"12 480 xg
w1 w2

Ulz,2)=U(z,2)+ U(z, Ro?') + U(z, Rp.7)
Ry reflection around zero and; reflection around..

Az, < 0 minimum eigenvalue anélits eigenfunction.



We need spectral gap for functions in the hyperplane
H:{h:fOLh:O}.

We have spectral gap for functions in the orthogonal. to

(u, Au) > 6(u,v), if (u,é) =0.

If the anglea betweere and H is too small we are in trouble:

€ 3

n
\
H



Decomposé, € H asae + bu with 4 orthogonal tce

(h, AR) = a®Xp, + b2(4, Ad)
a? = cos? o, b2 = sin® . With sin a = ﬁ fOL e.

If ¢ decays fast enougil ~ 7. Az iS negative
Competition  (h, Ah) > —|\r| + <6

If \; decays faster tha}j we can prove spectral gap farlarge
(h, AR) > d(h, h)
G. Manzi (2007)



Analysis of the spectrum usingarkov chains Generalize
method by De Masi, Olivieri, Presutti (1998), Ising case.

# bound on the minimum eigenvalue,
—cre” < \p < o
#® exponential bound on the minimum eigenfunctéon
_ce L] <ée<0

#® spectral gapn a suitable weighted ., for functionsu in
the orthogonal t@é. Implies spectral gap ihs.



OperatorS (Su); = w;U *uj, i+#j,i=1,2

— Z/dwwzuz(z‘iu)z = (u,u) + (u, Su)

(u, S*u) Z/uzsz* (w;U * u;) = (u, Tu)

Negative eigenvalue fof means eigenvalue fa¥ greater than
1. We study the operators

A

QU*h),

A

Tlh:wllA]*(w Tgh:wgﬁ*(wlU*h).



J(z, ') = /dzﬁ(x — 2) wa(2)

S

M(z,z') = p(z)J(z,2);  plz) = wi(z)ws(z)
For \;, > 0 andé(x) positive, define the Markov kernel

M (z,y)é(y)
Noé(x)

K(:C,y) —
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