Ill-posedness for bounded admbissible solutions of the 2-dimensional *p*-system

Camillo De Lellis^{*} University of Zürich, Switzerland delellis@math.uzh.ch László Székelyhidi Jr. University of Bonn, Germany

Consider the *p*-system of isentropic gas dynamics in Eulerian coordinates. The unknowns of the system, which consists of n + 1 equations, are the density ρ and the velocity v of the gas:

$$\begin{cases} \partial_t \rho + \operatorname{div}_x(\rho v) = 0\\ \partial_t(\rho v) + \operatorname{div}_x(\rho v \otimes v) + \nabla[p(\rho)] = 0\\ \rho(0, \cdot) = \rho^0\\ v(0, \cdot) = v^0 \end{cases}$$
(1)

The pressure p is a function of ρ , which is determined from the constitutive thermodynamic relations of the gas in question and satisfies the assumption p' > 0. A typical example is $p(\rho) = k\rho^{\gamma}$, with constants k > 0 and $\gamma > 1$, which gives the

As usual, with "admissible solutions" we understand bounded distributional solutions of (1) which satisfy an additional constraint. Consider the internal energy $\varepsilon : \mathbf{R}^+ \to \mathbf{R}$ given through the law $p(r) = r^2 \varepsilon'(r)$. Then a weak solution is admissible if satisfies the inequality

$$\partial_t \left[\rho \varepsilon(\rho) + \frac{\rho |v|^2}{2} \right] + \operatorname{div}_x \left[\left(\rho \varepsilon(\rho) + \frac{\rho |v|^2}{2} + p(\rho) \right) v \right] \le 0.$$
(2)

Definition 1 A weak solution of (1) is admissible if the following inequality holds for every nonnegative $\psi \in C_c^{\infty}(\mathbf{R}^n \times \mathbf{R})$:

$$\int_{\mathbf{R}^{n}\times\mathbf{R}^{+}} \left[\left(\rho \varepsilon(\rho) + \frac{\rho |v|^{2}}{2} \right) \partial_{t} \psi + \left(\rho \varepsilon(\rho) + \frac{\rho |v|^{2}}{2} + p(\rho) \right) \cdot \nabla_{x} \psi \right]$$

+
$$\int_{\mathbf{R}^{n}} \left(\rho^{0} \varepsilon(\rho^{0}) + \frac{\rho^{0} |v^{0}|^{2}}{2} \right) \psi(\cdot, 0) \geq 0.$$
(3)

In a recent joint work with László Székelyhidi, we prove the following result.

Theorem 1 Let $n \ge 2$. Then, for any given function p, there exist bounded initial data (ρ^0, v^0) with $\rho^0 \ge c > 0$ for which there are infinitely many bounded admissible solutions (ρ, v) of (1) with $\rho \ge c > 0$.

The result is based on a previous work in which we treat the incompressible Euler equations as a differential inclusion and construct very irregular weak solutions with the so-called "Baire Category argument" (or using the method of "Convex Integration"). In the case at hand we extend the approach to the *p*-system and we enhance the techniques in oder to construct admissible weak solutions.