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Introduction
We consider a hyperbolic model for 1–D multiphase reactive flow





vt − ux = 0

ut + p(v, λ)x = 0

λt =
α

τ
(p − pe)λ(λ − 1)

n v > 0: specific volume, u: velocity,
λ: mass density fraction of vapor in the fluid

0 ≤ λ ≤ 1; λ = 0 : liquid; λ = 1 : vapor;

n α > 0 positive parameter, pe a fixed equilibrium pressure, τ a reaction time

n p: pressure

p = p(v, λ) =
a2(λ)

v
, a(λ) > 0 , a′(λ) > 0

γ–law for isothermal gas dynamics (γ = 1).

[Fan, SIAM J. Appl. Math. 2000]
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The model
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The system shows all major wave patterns observed in shock tube
experiments on retrograde fluids.
[Thompson, Carofano, Kim, 1986]; [Thompson, Chaves, Meier, Kim and Speckmann, 1987] .

The model may take into account viscosity terms




vt − ux = 0

ut + px = εuxx

λt =
α

τ
(p − pe)λ(λ − 1) + bελxx

Riemann problem for the 0-viscosity and 0-relaxation limit: [Corli and Fan, 2005].

Hyp2008, 6/13/2008 OMulti-phase flow – p.2/26



The model

-
v

6
p λ = 0 λ = 1

pe

.

.

.

.

.

.

.

.

vm

.

.

.

.

.

.

.

.

vM

metastable vapor
)

stable vapor9

stable liquid q

metastable liquid -

The system shows all major wave patterns observed in shock tube
experiments on retrograde fluids.
[Thompson, Carofano, Kim, 1986]; [Thompson, Chaves, Meier, Kim and Speckmann, 1987] .

The model may take into account viscosity terms




vt − ux = 0

ut + px = εuxx

λt =
α

τ
(p − pe)λ(λ − 1) + bελxx

Riemann problem for the 0-viscosity and 0-relaxation limit: [Corli and Fan, 2005].

Hyp2008, 6/13/2008 OMulti-phase flow – p.2/26



The model

-
v

6
p λ = 0 λ = 1

pe

.

.

.

.

.

.

.

.

vm

.

.

.

.

.

.

.

.

vM

metastable vapor
)

stable vapor9

stable liquid q

metastable liquid -

The system shows all major wave patterns observed in shock tube
experiments on retrograde fluids.
[Thompson, Carofano, Kim, 1986]; [Thompson, Chaves, Meier, Kim and Speckmann, 1987] .

The model may take into account viscosity terms




vt − ux = 0

ut + px = εuxx

λt =
α

τ
(p − pe)λ(λ − 1) + bελxx

Riemann problem for the 0-viscosity and 0-relaxation limit: [Corli and Fan, 2005].

Hyp2008, 6/13/2008 Multi-phase flow – p.2/26



Aim of this work
n For a fixed relaxation time τ > 0, look for global (in time) solutions of the

Cauchy problem with large BV data

(v, u, λ)(0, x) =
(
vo(x), uo(x), λo(x)

)
,

In the spirit of the fractional step method [Dafermos& Hsiao, 1982], the analysis
will consider

u the homogeneous system: the 3 × 3 system of conservation laws

(H)





vt − ux = 0

ut + p(v, λ)x = 0

λt = 0

u the complete system, where the source term is added by time
discretization.

n The relaxation limit τ → 0.

We first focus on the analysis of system (H).
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Comparison with another model
In Eulerian coordinates, for p = a2(λ)ρ and ρ = 1/v, the system rewrites as





ρt + (ρu)x = 0,

(ρu)t +
(
ρu2 + p(ρ, λ)

)
x

= 0,

(ρλ)t + (ρλu)x = 0 .

In [Benzoni-Gavage, 1991] many models for diphasic flows are proposed, for
instance





(ρlRl)t + (ρlRlul)x = 0

(ρgRg)t + (ρgRgug)x = 0

(ρlRlul + ρgRgug)t + (ρlRlu
2
l + ρgRgu2

g + p)x = 0 .

Here l and g stand for liquid and gas; ρl, Rl, ul are the liquid density, phase
fraction, velocity, and analogously for the gas, Rl + Rg = 1, p = a2ρg.

Hyp2008, 6/13/2008 OMulti-phase flow – p.4/26



Comparison with another model
In Eulerian coordinates, for p = a2(λ)ρ and ρ = 1/v, the system rewrites as





ρt + (ρu)x = 0,

(ρu)t +
(
ρu2 + p(ρ, λ)

)
x

= 0,

(ρλ)t + (ρλu)x = 0 .

In [Benzoni-Gavage, 1991] many models for diphasic flows are proposed, for
instance





(ρlRl)t + (ρlRlul)x = 0

(ρgRg)t + (ρgRgug)x = 0

(ρlRlul + ρgRgug)t + (ρlRlu
2
l + ρgRgu2

g + p)x = 0 .

Here l and g stand for liquid and gas; ρl, Rl, ul are the liquid density, phase
fraction, velocity, and analogously for the gas, Rl + Rg = 1, p = a2ρg.

Hyp2008, 6/13/2008 Multi-phase flow – p.4/26



Comparison with another model

If ul = ug and ρl = 1, define the concentration c =
ρgRg

ρlRl

then [Peng, 1994]





(Rl)t + (Rlu)x = 0

(Rlc)t + (Rlcu)x = 0

(Rl(1 + c)u)t +
(
Rl(1 + c)u2 + p

)
x

= 0

(P)

with p = a2c
Rl

1 − Rl

.

System (P) is strictly hyperbolic for c > 0; the eigenvalues coincide with u at
c = 0.
If c ≡ 0 then (P) reduces to the pressureless gasdynamics system.

System (P) is analogous to (H) in Eulerian coordinates, with λ =
c

1 + c
,

but the pressure laws differ when λ , c ∼ 0.
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The homogeneous system
Issue: existence of weak solutions (in the BV class) for the Cauchy problem,
globally defined in time, with possibly large data:

(H)





vt − ux = 0

ut +
(

a2(λ)
v

)

x
= 0

λt = 0

v(0, x) = vo(x)

u(0, x) = uo(x)

λ(0, x) = λo(x) .

A strictly hyperbolic 3 × 3 system: e1,3 = ±√−pv = ±a(λ)/v, e2 = 0 .
Two fields are GNL, one is LD .

n From the third equation: λ = λo(x)

{
vt − ux = 0

ut + p(v, λo(x))x = 0

⇒ 2 × 2 system with non-homogeneous flux, possibly discontinuous.

n For small BV data: well-posedness of the Cauchy problem.
[Glimm 1965; Bressan, Hyperbolic systems..., 2000].
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Known results (partial list)
n If λo is constant : the Cauchy problem for vt − ux = 0, ut + (a2/v)x = 0 has

a global solution for every initial data (vo, uo) with

Tot.Var. (vo, uo) < ∞

[Nishida (1968), Colombo & Risebro (1998)].

n If p(v) =
a2

vγ
, with γ > 1 global existence if (γ − 1)Tot.Var. (uo, vo) is small

[Nishida-Smoller, DiPerna 1973].

See also [Holden, Risebro & Sande (2008)].

n If λo is not constant, a close system was studied by Peng (1994); results by
compensated compactness: Béreux, Bonnetier, & LeFloch (1997); Gosse (2001); Lu

(2003), but for different pressure laws.

n For the full Euler system: Liu (1977), Temple (1981).

Hyp2008, 6/13/2008 OMulti-phase flow – p.7/26



Known results (partial list)
n If λo is constant : the Cauchy problem for vt − ux = 0, ut + (a2/v)x = 0 has

a global solution for every initial data (vo, uo) with

Tot.Var. (vo, uo) < ∞

[Nishida (1968), Colombo & Risebro (1998)].

n If p(v) =
a2

vγ
, with γ > 1 global existence if (γ − 1)Tot.Var. (uo, vo) is small

[Nishida-Smoller, DiPerna 1973].

See also [Holden, Risebro & Sande (2008)].

n If λo is not constant, a close system was studied by Peng (1994); results by
compensated compactness: Béreux, Bonnetier, & LeFloch (1997); Gosse (2001); Lu

(2003), but for different pressure laws.

n For the full Euler system: Liu (1977), Temple (1981).

Hyp2008, 6/13/2008 OMulti-phase flow – p.7/26



Known results (partial list)
n If λo is constant : the Cauchy problem for vt − ux = 0, ut + (a2/v)x = 0 has

a global solution for every initial data (vo, uo) with

Tot.Var. (vo, uo) < ∞

[Nishida (1968), Colombo & Risebro (1998)].

n If p(v) =
a2

vγ
, with γ > 1 global existence if (γ − 1)Tot.Var. (uo, vo) is small

[Nishida-Smoller, DiPerna 1973].

See also [Holden, Risebro & Sande (2008)].

n If λo is not constant, a close system was studied by Peng (1994); results by
compensated compactness: Béreux, Bonnetier, & LeFloch (1997); Gosse (2001); Lu

(2003), but for different pressure laws.

n For the full Euler system: Liu (1977), Temple (1981).

Hyp2008, 6/13/2008 OMulti-phase flow – p.7/26



Known results (partial list)
n If λo is constant : the Cauchy problem for vt − ux = 0, ut + (a2/v)x = 0 has

a global solution for every initial data (vo, uo) with

Tot.Var. (vo, uo) < ∞

[Nishida (1968), Colombo & Risebro (1998)].

n If p(v) =
a2

vγ
, with γ > 1 global existence if (γ − 1)Tot.Var. (uo, vo) is small

[Nishida-Smoller, DiPerna 1973].

See also [Holden, Risebro & Sande (2008)].

n If λo is not constant, a close system was studied by Peng (1994); results by
compensated compactness: Béreux, Bonnetier, & LeFloch (1997); Gosse (2001); Lu

(2003), but for different pressure laws.

n For the full Euler system: Liu (1977), Temple (1981).

Hyp2008, 6/13/2008 Multi-phase flow – p.7/26



Other known results
About p-system with γ = 1 and source term:

n [Luskin-Temple, 1982];
[Poupaud, Rascle, Vila 1995] for the isothermal Euler-Poisson system with
large data.

n [Luo-Natalini-Yang 2000], [Amadori-Guerra, 2001]:
global existence of BV solutions for

{
vt − ux = 0

ut + (1/v)x = 1
τ
r(v, u) ,

and relaxation limit for τ → 0. Tipical case: r(v, u) = A(v) − u .
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Main result for the homogeneous system
Assume: vo(x) ≥ v > 0 , λo(x) ∈ [0, 1] and define

Ao = 2 sup

n∑

j=1

|a(λ(xj)) − a(λ(xj−1))|
a(λ(xj)) + a(λ(xj−1))

.

where the supremum is taken over all n ≥ 1, xo < x1 < . . . < xn.

Observe that Ao ∼ Tot.Var.
(
log

(
a(λo)

))
.

Theorem 1: For a suitable decreasing function H : (0, 1/2] → [0,∞), if

Ao <
1

2
,

Tot.Var. (log po) +
1

inf ao

Tot.Var. uo < H(Ao) ,

then the Cauchy problem for (H) has a weak entropic solution (v, u, λ) defined
for t ≥ 0, with uniformly bounded total variation.
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The function H can be explicitly computed. It satisfies

H : (0, 1/2] → [0,∞) , H(1/2) = 0 , lim
A→0+

H(A) = +∞ .

Note that: the smaller is Ao, the larger is H(Ao) (recall Nishida-Smoller).

Graph of H(Ao):
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[Amadori, Corli, SIAM J. Math. Anal., 2008]
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The Riemann problem
n The Cauchy problem for





vt − ux = 0

ut +
(

a2(λ)
v

)

x
= 0

λt = 0

(v, u, λ)(0, x) =

{
(v`, u`, λ`) x < 0

(vr, ur, λr) x > 0

can be solved for any pair of initial data (with v`, vr > 0 and λ`, λr ∈ [0, 1]).

ε2 ε3ε1

n Phase waves are stationary: p, u are conserved across them
(a “kinetic condition”).

p` = pr

u` = ur
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(vr, ur, λr) x > 0

can be solved for any pair of initial data (with v`, vr > 0 and λ`, λr ∈ [0, 1]).

ε2 ε3ε1
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n Strength of the 1-, 3- waves:

|ε1,3| =
1

2

∣∣∣∣log

(
vr

v`

)∣∣∣∣ =
1

2

∣∣∣∣log
(

pr

p`

)∣∣∣∣ .

⇒ Since p is constant across 2-waves, then
∑

i=1,3

|εi| ∼ Tot.Var. log p

n Strength of the 2- waves:

ε2 = 2
a(λr) − a(λ`)

a(λr) + a(λ`)
.
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Interactions with phase waves

δ2 δ1

ε3ε1

δ2δ3

ε3ε1

Lemma:
|εj | ≤

1

2
|δ2| · |δi| i, j = 1, 3, i 6= j

|ε1| + |ε3| ≤





|δ1| + |δ1|[δ2]
+

if 1 interacts ,

|δ3| + |δ3|[δ2]
−

if 3 interacts .

n The reflected wave may be very large.

n The variation |ε1| + |ε3| − |δi| may increase iff δi is moving toward a more
liquid region.
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Interactions of sonic waves – 1
n Waves of different families (1 or 3)

cross each other without changing
their strength:

δ3 δ1

ε3ε1

n Waves of the same family:
|ε1| + |ε3| ≤ |α3| + |β3|

α3 β3

ε3ε1

⇒ If λ is constant (no 2-waves are present),
then L(t) =

∑
i=1,3 |εi| is not increasing [Nishida 68].

However, large reflected waves may interact with phase waves,
producing even larger waves...

⇒ Needed: improved estimates on the reflected waves.
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Interactions of sonic waves – 2
Lemma: Let two waves of the same
family, of sizes αi and βi (i = 1, 3)
interact, producing ε1, ε3;
assume that for m > 0

|αi| < m , |βi| < m .
α3 β3

ε3ε1

Then there exists a damping coefficient d = d(m),
with 0 < d(m) < 1, s.t.

|εj | ≤ d(m) · min{|αi|, |βi|} , j 6= i .

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
d(

m
)

Note: d(m) → 1 as m → ∞
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The algorithm
Use a suitable version of a wave-front tracking algorithm (mainly from Bressan

(2000) and Amadori-Guerra (2001)):

n approximate the initial data with piecewise constant functions;

n solve the interactions of sonic waves (families 1 and 3) always with the
accurate RS;

n solve the interactions with the stationary phase waves (family 2) both with
the accurate and the simplified RS, introducing non-physical waves;

ε3ε1

δ3

δ3

np

δ3
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The functionals
Introduce ξ ≥ 1, K ≥ 0 and define

Lξ =
∑

i=1,3, rar

|γi| + ξ
∑

i=1,3, sh

|γi| + Knp

∑

γ∈NP

|γ|

Q =
∑

γi, δ2approaching ,i=1,3

|γi||δ2|

F = Lξ + KQ ∼ Tot.Var. (log p, u)

n After a suitable choice of the coefficients ξ and K (neither too small, nor
too large), one finds

∆F (t) ≤ 0 for all t.
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Convergence and consistence
n Prove that the number of interactions is finite in finite time.

n Control the total size of non-physical fronts.
Keep trace the generation order of waves:

h k

min{h, k}max{h, k} + 1

Lemma [A contraction property]
For some 0 < µ < 1, and for every k ∈ N,

[total strength of waves with generation order≥ k] ≤ µk−1 · F (0) .

n Pass to the limit by compactness.
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The system with a reaction term
We come back to the complete system:

(HS)





vt − ux = 0

ut + p(v, λ)x = 0

λt =
1

τ
g(p, λ) , g = (p − pe)λ(λ − 1)

Let E = {(v, u, λ) : g = 0} be the set of equilibrium points of the source term.
It consists of 3 subsets:

n Eo, λ = 0, liquid phase: the system reduces to

vt − ux = 0, ut + p(v, 0)x = 0 .

n E1, λ = 1, vapor phase

n Ep, equilibrium pressure. Here the system reduces to

p = pe , u = const. , λ = λ(x) .
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The case λ ∼ 0

For τ > 0 fixed, we focus on the case λ ∼ 0. From the equation

λt =
1

τ
(p − pe)λ(λ − 1) ,

note that the sign of (p − pe) determines the behavior of the equation for λ:
provided that

p − pe ≥ c > 0 , λ ≤ µ < 1

then we get
λt ≤ − c

τ
(1 − µ)λ

and the contribution of the source term decays exponentially in time.

[Dafermos& Hsiao, 1982]
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The case λ ∼ 0

Theorem 2: For τ > 0 fixed, assume that:

inf vo(x) > 0 , inf po(x) > pe

Tot.Var. (log(po)) + 1
inf ao

Tot.Var. (uo) < log po(−∞) − log pe ,

and that
‖λo‖∞ , Tot.Var. λo

are sufficiently small.

Then the Cauchy problem for the system (HS) has a weak entropic solution
(v, u, λ) defined for t ≥ 0, with uniformly bounded total variation.
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Applying the fractional step scheme...

t = n∆t

2 1 np 3

n t → ‖λ(t)‖∞ decays ⇒ control on Tot.Var. (p, u, λ)

⇒ control on p from below

n For every t > s ≥ 0, one has
∫ b

a
|λ(x, t) − λ(x, s)| dx ≤ Lτ (t − s + ∆t)

Lτ = C1 +
C2

τ
e−

C3s

τ .
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The relaxation limit
Theorem 3: For τ > 0, consider the system (HS) and the initial data

(v, u, λ)(0, x) =
(
vτ

o (x), uτ
o(x), λτ

o(x)
)
,

satisfying the bounds of Theorem 2 uniformly with respect to τ . Assume that

vτ
o → vo , uτ

o → uo in L1
loc(R) , as τ → 0 .

Let (vτ , uτ , λτ )(x, t) be the weak entropic solution provided by Theorem 2.

Then there exists a (sub)sequence τn → 0 s. t.

λτn → 0 in L1
loc(R × (0,∞))

(vτn , uτn) → (ṽ, ũ) in L1
loc(R × [0,∞)) ,

where (ṽ, ũ) is a weak solution for t ≥ 0 to the Cauchy problem
{

vt − ux = 0

ut + p(v, 0)x = 0 ,

{
v(x, 0) = vo(x)

u(x, 0) = uo(x) .
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The relaxation limit: entropies
Given

η̃(v, u) =
u2

2
− A(0) log v, q̃(v, u) =

A(0)u

v
,

(entropy-entropy flux pair for the 2× 2 system with λ = 0), then, for any smooth
function φ

η(v, u, λ) =
u2

2
− A(λ) log v + φ(λ), q(v, u, λ) =

A(λ)u

v

is an entropy-entropy flux pair for the complete system (HS).

n Under certain assumptions on φ, the entropy η is convex.

n Entropy inequality for τ > 0: ηt + qx ≤ 1

τ
.

n For a suitable choice of φ, the entropy is dissipative w.r.t. the source term.
Hence one can pass to the limit τn → 0 and prove that the (ṽ, ũ) satisfies
the entropy inequality for the 2 × 2 system w.r.t. η̃, q̃.

Hyp2008, 6/13/2008 OMulti-phase flow – p.24/26



The relaxation limit: entropies
Given

η̃(v, u) =
u2

2
− A(0) log v, q̃(v, u) =

A(0)u

v
,

(entropy-entropy flux pair for the 2× 2 system with λ = 0), then, for any smooth
function φ

η(v, u, λ) =
u2

2
− A(λ) log v + φ(λ), q(v, u, λ) =

A(λ)u

v

is an entropy-entropy flux pair for the complete system (HS).

n Under certain assumptions on φ, the entropy η is convex.

n Entropy inequality for τ > 0: ηt + qx ≤ 1

τ
.

n For a suitable choice of φ, the entropy is dissipative w.r.t. the source term.
Hence one can pass to the limit τn → 0 and prove that the (ṽ, ũ) satisfies
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the entropy inequality for the 2 × 2 system w.r.t. η̃, q̃.
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The relaxation limit: entropies
Given

η̃(v, u) =
u2

2
− A(0) log v, q̃(v, u) =

A(0)u

v
,

(entropy-entropy flux pair for the 2× 2 system with λ = 0), then, for any smooth
function φ

η(v, u, λ) =
u2

2
− A(λ) log v + φ(λ), q(v, u, λ) =

A(λ)u

v

is an entropy-entropy flux pair for the complete system (HS).

n Under certain assumptions on φ, the entropy η is convex.

n Entropy inequality for τ > 0: ηt + qx ≤ 1

τ
ηλ · g(v, λ)︸ ︷︷ ︸

≤0

.

n For a suitable choice of φ, the entropy is dissipative w.r.t. the source term.
Hence one can pass to the limit τn → 0 and prove that the (ṽ, ũ) satisfies
the entropy inequality for the 2 × 2 system w.r.t. η̃, q̃.
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Final remarks
n The case λ ∼ 1, p < pe.

n The case p ∼ pe.

u Smooth solutions for small C1 data with p(x) → pe as x → ±∞. Do they
exist for all times?
Shizuta-Kawashima condition is not satisfied at p = pe: here

ker DG(Uo) ∩ {eigenspaces of DF (Uo)} 6= {0}

where G = (0, 0, g(v, λ)) and F = (−u, p, 0).
[Natalini-Hanouzet 2003]

u Weak solutions
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Related problems
n Extend the analysis to more general pressure laws.

n Are the sufficient conditions given in the Theorem 1 also necessary?
Does blow up occur?

n Uniqueness, continuous dependence

Thank you!!
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