Global solutions for a hyperbolic model of multiphase flow

Debora Amadori
University of L’Aquila (Italy)

joint work with
Andrea Corli, University of Ferrara (Italy)

Introduction

We consider a hyperbolic model for 1-D multiphase reactive flow

$$
\begin{cases}v_{t}-u_{x} & =0 \\ u_{t}+p(v, \lambda)_{x} & =0 \\ \lambda_{t} & =\frac{\alpha}{\tau}\left(p-p_{e}\right) \lambda(\lambda-1)\end{cases}
$$

■ $v>0$: specific volume, u : velocity,
λ : mass density fraction of vapor in the fluid

$$
0 \leq \lambda \leq 1 ; \quad \lambda=0: \text { liquid; } \quad \lambda=1: \text { vapor; }
$$

Introduction

We consider a hyperbolic model for 1-D multiphase reactive flow

$$
\begin{cases}v_{t}-u_{x} & =0 \\ u_{t}+p(v, \lambda)_{x} & =0 \\ \lambda_{t} & =\frac{\alpha}{\tau}\left(p-p_{e}\right) \lambda(\lambda-1)\end{cases}
$$

■ $v>0$: specific volume, u : velocity,
λ : mass density fraction of vapor in the fluid

$$
0 \leq \lambda \leq 1 ; \quad \lambda=0: \text { liquid; } \quad \lambda=1: \text { vapor; }
$$

■ $\alpha>0$ positive parameter, p_{e} a fixed equilibrium pressure, τ a reaction time

Introduction

We consider a hyperbolic model for 1-D multiphase reactive flow

$$
\begin{cases}v_{t}-u_{x} & =0 \\ u_{t}+p(v, \lambda)_{x} & =0 \\ \lambda_{t} & =\frac{\alpha}{\tau}\left(p-p_{e}\right) \lambda(\lambda-1)\end{cases}
$$

■ $v>0$: specific volume, u : velocity,
λ : mass density fraction of vapor in the fluid

$$
0 \leq \lambda \leq 1 ; \quad \lambda=0: \text { liquid; } \quad \lambda=1: \text { vapor; }
$$

■ $\alpha>0$ positive parameter, p_{e} a fixed equilibrium pressure, τ a reaction time

- p : pressure

$$
p=p(v, \lambda)=\frac{a^{2}(\lambda)}{v}, \quad a(\lambda)>0, \quad a^{\prime}(\lambda)>0
$$

γ-law for isothermal gas dynamics $(\gamma=1)$.

Introduction

We consider a hyperbolic model for 1-D multiphase reactive flow

$$
\begin{cases}v_{t}-u_{x} & =0 \\ u_{t}+p(v, \lambda)_{x} & =0 \\ \lambda_{t} & =\frac{\alpha}{\tau}\left(p-p_{e}\right) \lambda(\lambda-1)\end{cases}
$$

■ $v>0$: specific volume, u : velocity,
λ : mass density fraction of vapor in the fluid

$$
0 \leq \lambda \leq 1 ; \quad \lambda=0: \text { liquid; } \quad \lambda=1: \text { vapor; }
$$

■ $\alpha>0$ positive parameter, p_{e} a fixed equilibrium pressure, τ a reaction time

- p : pressure

$$
p=p(v, \lambda)=\frac{a^{2}(\lambda)}{v}, \quad a(\lambda)>0, \quad a^{\prime}(\lambda)>0
$$

γ-law for isothermal gas dynamics $(\gamma=1)$.
[Fan, SIAM J. Appl. Math. 2000]

The model

The model

The system shows all major wave patterns observed in shock tube experiments on retrograde fluids.
[Thompson, Carofano, Kim, 1986]; [Thompson, Chaves, Meier, Kim and Speckmann, 1987] .

The model

The system shows all major wave patterns observed in shock tube experiments on retrograde fluids.
[Thompson, Carofano, Kim, 1986]; [Thompson, Chaves, Meier, Kim and Speckmann, 1987] .
The model may take into account viscosity terms

$$
\begin{cases}v_{t}-u_{x} & =0 \\ u_{t}+p_{x} & =\varepsilon u_{x x} \\ \lambda_{t} & =\frac{\alpha}{\tau}\left(p-p_{e}\right) \lambda(\lambda-1)+b \varepsilon \lambda_{x x}\end{cases}
$$

Riemann problem for the 0-viscosity and 0-relaxation limit: [Corli and Fan, 2005].

Aim of this work

■ For a fixed relaxation time $\tau>0$, look for global (in time) solutions of the Cauchy problem with large BV data

$$
(v, u, \lambda)(0, x)=\left(v_{o}(x), u_{o}(x), \lambda_{o}(x)\right),
$$

In the spirit of the fractional step method [Dafermos\& Hsiao, 1982], the analysis will consider

Aim of this work

■ For a fixed relaxation time $\tau>0$, look for global (in time) solutions of the Cauchy problem with large BV data

$$
(v, u, \lambda)(0, x)=\left(v_{o}(x), u_{o}(x), \lambda_{o}(x)\right)
$$

In the spirit of the fractional step method [Dafermos\& Hsiao, 1982], the analysis will consider

- the homogeneous system: the 3×3 system of conservation laws

$$
\text { (H) } \begin{cases}v_{t}-u_{x} & =0 \\ u_{t}+p(v, \lambda)_{x} & =0 \\ \lambda_{t} & =0\end{cases}
$$

Aim of this work

■ For a fixed relaxation time $\tau>0$, look for global (in time) solutions of the Cauchy problem with large BV data

$$
(v, u, \lambda)(0, x)=\left(v_{o}(x), u_{o}(x), \lambda_{o}(x)\right)
$$

In the spirit of the fractional step method [Dafermos\& Hsiao, 1982], the analysis will consider

- the homogeneous system: the 3×3 system of conservation laws

$$
\text { (H) } \begin{cases}v_{t}-u_{x} & =0 \\ u_{t}+p(v, \lambda)_{x} & =0 \\ \lambda_{t} & =0\end{cases}
$$

- the complete system, where the source term is added by time discretization.

Aim of this work

- For a fixed relaxation time $\tau>0$, look for global (in time) solutions of the Cauchy problem with large BV data

$$
(v, u, \lambda)(0, x)=\left(v_{o}(x), u_{o}(x), \lambda_{o}(x)\right)
$$

In the spirit of the fractional step method [Dafermos\& Hsiao, 1982], the analysis will consider

- the homogeneous system: the 3×3 system of conservation laws

$$
\text { (H) } \begin{cases}v_{t}-u_{x} & =0 \\ u_{t}+p(v, \lambda)_{x} & =0 \\ \lambda_{t} & =0\end{cases}
$$

- the complete system, where the source term is added by time discretization.

■ The relaxation limit $\tau \rightarrow 0$.

Aim of this work

- For a fixed relaxation time $\tau>0$, look for global (in time) solutions of the Cauchy problem with large BV data

$$
(v, u, \lambda)(0, x)=\left(v_{o}(x), u_{o}(x), \lambda_{o}(x)\right)
$$

In the spirit of the fractional step method [Dafermos\& Hsiao, 1982], the analysis will consider

- the homogeneous system: the 3×3 system of conservation laws

$$
\text { (H) } \begin{cases}v_{t}-u_{x} & =0 \\ u_{t}+p(v, \lambda)_{x} & =0 \\ \lambda_{t} & =0\end{cases}
$$

- the complete system, where the source term is added by time discretization.

■ The relaxation limit $\tau \rightarrow 0$.

We first focus on the analysis of system (H).

Comparison with another model

In Eulerian coordinates, for $p=a^{2}(\lambda) \rho$ and $\rho=1 / v$, the system rewrites as

$$
\begin{cases}\rho_{t}+(\rho u)_{x} & =0 \\ (\rho u)_{t}+\left(\rho u^{2}+p(\rho, \lambda)\right)_{x} & =0 \\ (\rho \lambda)_{t}+(\rho \lambda u)_{x} & =0\end{cases}
$$

Comparison with another model

In Eulerian coordinates, for $p=a^{2}(\lambda) \rho$ and $\rho=1 / v$, the system rewrites as

$$
\begin{cases}\rho_{t}+(\rho u)_{x} & =0 \\ (\rho u)_{t}+\left(\rho u^{2}+p(\rho, \lambda)\right)_{x} & =0 \\ (\rho \lambda)_{t}+(\rho \lambda u)_{x} & =0\end{cases}
$$

In [Benzoni-Gavage, 1991] many models for diphasic flows are proposed, for instance

$$
\begin{cases}\left(\rho_{l} R_{l}\right)_{t}+\left(\rho_{l} R_{l} u_{l}\right)_{x} & =0 \\ \left(\rho_{g} R_{g}\right)_{t}+\left(\rho_{g} R_{g} u_{g}\right)_{x} & =0 \\ \left(\rho_{l} R_{l} u_{l}+\rho_{g} R_{g} u_{g}\right)_{t}+\left(\rho_{l} R_{l} u_{l}^{2}+\rho_{g} R_{g} u_{g}^{2}+p\right)_{x} & =0\end{cases}
$$

Here l and g stand for liquid and gas; ρ_{l}, R_{l}, u_{l} are the liquid density, phase fraction, velocity, and analogously for the gas, $R_{l}+R_{g}=1, p=a^{2} \rho_{g}$.

Comparison with another model

If $u_{l}=u_{g}$ and $\rho_{l}=1$, define the concentration $c=\frac{\rho_{g} R_{g}}{\rho_{l} R_{l}}$ then [Peng, 1994]

$$
\begin{cases}\left(R_{l}\right)_{t}+\left(R_{l} u\right)_{x} & =0 \tag{P}\\ \left(R_{l} c\right)_{t}+\left(R_{l} c u\right)_{x} & =0 \\ \left(R_{l}(1+c) u\right)_{t}+\left(R_{l}(1+c) u^{2}+p\right)_{x} & =0\end{cases}
$$

with $p=a^{2} c \frac{R_{l}}{1-R_{l}}$.

Comparison with another model

If $u_{l}=u_{g}$ and $\rho_{l}=1$, define the concentration $c=\frac{\rho_{g} R_{g}}{\rho_{l} R_{l}}$ then [Peng, 1994]

$$
\begin{cases}\left(R_{l}\right)_{t}+\left(R_{l} u\right)_{x} & =0 \tag{P}\\ \left(R_{l} c\right)_{t}+\left(R_{l} c u\right)_{x} & =0 \\ \left(R_{l}(1+c) u\right)_{t}+\left(R_{l}(1+c) u^{2}+p\right)_{x} & =0\end{cases}
$$

with $p=a^{2} c \frac{R_{l}}{1-R_{l}}$.
System (\mathbf{P}) is strictly hyperbolic for $c>0$; the eigenvalues coincide with u at $c=0$.
If $c \equiv 0$ then (P) reduces to the pressureless gasdynamics system.

Comparison with another model

If $u_{l}=u_{g}$ and $\rho_{l}=1$, define the concentration $c=\frac{\rho_{g} R_{g}}{\rho_{l} R_{l}}$ then [Peng, 1994]

$$
\begin{cases}\left(R_{l}\right)_{t}+\left(R_{l} u\right)_{x} & =0 \tag{P}\\ \left(R_{l} c\right)_{t}+\left(R_{l} c u\right)_{x} & =0 \\ \left(R_{l}(1+c) u\right)_{t}+\left(R_{l}(1+c) u^{2}+p\right)_{x} & =0\end{cases}
$$

with $p=a^{2} c \frac{R_{l}}{1-R_{l}}$.
System (\mathbf{P}) is strictly hyperbolic for $c>0$; the eigenvalues coincide with u at $c=0$.
If $c \equiv 0$ then (\mathbf{P}) reduces to the pressureless gasdynamics system.
System (P) is analogous to (H) in Eulerian coordinates, with $\lambda=\frac{c}{1+c}$, but the pressure laws differ when $\lambda, c \sim 0$.

The homogeneous system

Issue: existence of weak solutions (in the BV class) for the Cauchy problem, globally defined in time, with possibly large data:

$$
\text { (H) }\left\{\begin{array}{lll}
v_{t}-u_{x} & =0 & v(0, x)=v_{o}(x) \\
u_{t}+\left(\frac{a^{2}(\lambda)}{v}\right)_{x} & =0 & u(0, x)=u_{o}(x) \\
\lambda_{t} & =0 & \lambda(0, x)=\lambda_{o}(x) .
\end{array}\right.
$$

The homogeneous system

Issue: existence of weak solutions (in the BV class) for the Cauchy problem, globally defined in time, with possibly large data:

$$
\text { (H) }\left\{\begin{array}{lll}
v_{t}-u_{x} & =0 & v(0, x)=v_{o}(x) \\
u_{t}+\left(\frac{a^{2}(\lambda)}{v}\right)_{x} & =0 & u(0, x)=u_{o}(x) \\
\lambda_{t} & =0 & \lambda(0, x)=\lambda_{o}(x) .
\end{array}\right.
$$

A strictly hyperbolic 3×3 system: $\quad e_{1,3}= \pm \sqrt{-p_{v}}= \pm a(\lambda) / v, \quad e_{2}=0$. Two fields are GNL, one is LD .

The homogeneous system

Issue: existence of weak solutions (in the BV class) for the Cauchy problem, globally defined in time, with possibly large data:

$$
\text { (H) }\left\{\begin{array}{lll}
v_{t}-u_{x} & =0 & v(0, x)=v_{o}(x) \\
u_{t}+\left(\frac{a^{2}(\lambda)}{v}\right)_{x} & =0 & u(0, x)=u_{o}(x) \\
\lambda_{t} & =0 & \lambda(0, x)=\lambda_{o}(x) .
\end{array}\right.
$$

A strictly hyperbolic 3×3 system: $\quad e_{1,3}= \pm \sqrt{-p_{v}}= \pm a(\lambda) / v, \quad e_{2}=0$. Two fields are GNL, one is LD .

- From the third equation: $\quad \lambda=\lambda_{o}(x)$

$$
\begin{cases}v_{t}-u_{x} & =0 \\ u_{t}+p\left(v, \lambda_{o}(x)\right)_{x} & =0\end{cases}
$$

$\Rightarrow \quad 2 \times 2$ system with non-homogeneous flux, possibly discontinuous.

The homogeneous system

Issue: existence of weak solutions (in the BV class) for the Cauchy problem, globally defined in time, with possibly large data:

$$
\text { (H) }\left\{\begin{array}{lll}
v_{t}-u_{x} & =0 & v(0, x)=v_{o}(x) \\
u_{t}+\left(\frac{a^{2}(\lambda)}{v}\right)_{x} & =0 & u(0, x)=u_{o}(x) \\
\lambda_{t} & =0 & \lambda(0, x)=\lambda_{o}(x) .
\end{array}\right.
$$

A strictly hyperbolic 3×3 system: $\quad e_{1,3}= \pm \sqrt{-p_{v}}= \pm a(\lambda) / v, \quad e_{2}=0$. Two fields are GNL, one is LD .

- From the third equation: $\quad \lambda=\lambda_{o}(x)$

$$
\begin{cases}v_{t}-u_{x} & =0 \\ u_{t}+p\left(v, \lambda_{o}(x)\right)_{x} & =0\end{cases}
$$

$\Rightarrow \quad 2 \times 2$ system with non-homogeneous flux, possibly discontinuous.

- For small BV data: well-posedness of the Cauchy problem.
[Glimm 1965; Bressan, Hyperbolic systems..., 2000].

Known results (partial list)

■ If λ_{o} is constant: the Cauchy problem for $v_{t}-u_{x}=0, u_{t}+\left(a^{2} / v\right)_{x}=0$ has a global solution for every initial data (v_{o}, u_{o}) with

Tot.Var. $\left(v_{o}, u_{o}\right)<\infty$
[Nishida (1968), Colombo \& Risebro (1998)].

Known results (partial list)

■ If λ_{o} is constant: the Cauchy problem for $v_{t}-u_{x}=0, u_{t}+\left(a^{2} / v\right)_{x}=0$ has a global solution for every initial data (v_{o}, u_{o}) with

Tot.Var. $\left(v_{o}, u_{o}\right)<\infty$
[Nishida (1968), Colombo \& Risebro (1998)].

■ If $p(v)=\frac{a^{2}}{v^{\gamma}}$, with $\gamma>1$ global existence if $(\gamma-1)$ Tot.Var. $\left(u_{o}, v_{o}\right)$ is small [Nishida-Smoller, DiPerna 1973].
See also [Holden, Risebro \& Sande (2008)].

Known results (partial list)

■ If λ_{o} is constant: the Cauchy problem for $v_{t}-u_{x}=0, u_{t}+\left(a^{2} / v\right)_{x}=0$ has a global solution for every initial data $\left(v_{o}, u_{o}\right)$ with

Tot.Var. $\left(v_{o}, u_{o}\right)<\infty$
[Nishida (1968), Colombo \& Risebro (1998)].

■ If $p(v)=\frac{a^{2}}{v^{\gamma}}$, with $\gamma>1$ global existence if $(\gamma-1)$ Tot.Var. $\left(u_{o}, v_{o}\right)$ is small [Nishida-Smoller, DiPerna 1973].
See also [Holden, Risebro \& Sande (2008)].

■ If λ_{o} is not constant, a close system was studied by Peng (1994); results by compensated compactness: Béreux, Bonnetier, \& LeFloch (1997); Gosse (2001); Lu (2003), but for different pressure laws.

Known results (partial list)

- If λ_{o} is constant: the Cauchy problem for $v_{t}-u_{x}=0, u_{t}+\left(a^{2} / v\right)_{x}=0$ has a global solution for every initial data (v_{o}, u_{o}) with

Tot.Var. $\left(v_{o}, u_{o}\right)<\infty$
[Nishida (1968), Colombo \& Risebro (1998)].

■ If $p(v)=\frac{a^{2}}{v^{\gamma}}$, with $\gamma>1$ global existence if $(\gamma-1)$ Tot.Var. $\left(u_{o}, v_{o}\right)$ is small [Nishida-Smoller, DiPerna 1973].
See also [Holden, Risebro \& Sande (2008)].

■ If λ_{o} is not constant, a close system was studied by Peng (1994); results by compensated compactness: Béreux, Bonnetier, \& LeFloch (1997); Gosse (2001); Lu (2003), but for different pressure laws.

■ For the full Euler system: Liu (1977), Temple (1981).

Other known results

About p-system with $\gamma=1$ and source term:

■ [Luskin-Temple, 1982];
[Poupaud, Rascle, Vila 1995] for the isothermal Euler-Poisson system with large data.

Other known results

About p-system with $\gamma=1$ and source term:

■ [Luskin-Temple, 1982];
[Poupaud, Rascle, Vila 1995] for the isothermal Euler-Poisson system with large data.

■ [Luo-Natalini-Yang 2000], [Amadori-Guerra, 2001]: global existence of BV solutions for

$$
\begin{cases}v_{t}-u_{x} & =0 \\ u_{t}+(1 / v)_{x} & =\frac{1}{\tau} r(v, u)\end{cases}
$$

and relaxation limit for $\tau \rightarrow 0$. Tipical case: $r(v, u)=A(v)-u$.

Main result for the homogeneous system

Assume: $v_{o}(x) \geq \underline{v}>0, \lambda_{o}(x) \in[0,1]$ and define

$$
A_{o}=2 \sup \sum_{j=1}^{n} \frac{\left|a\left(\lambda\left(x_{j}\right)\right)-a\left(\lambda\left(x_{j-1}\right)\right)\right|}{a\left(\lambda\left(x_{j}\right)\right)+a\left(\lambda\left(x_{j-1}\right)\right)}
$$

where the supremum is taken over all $n \geq 1, x_{o}<x_{1}<\ldots<x_{n}$.

Main result for the homogeneous system

Assume: $v_{o}(x) \geq \underline{v}>0, \lambda_{o}(x) \in[0,1]$ and define

$$
A_{o}=2 \sup \sum_{j=1}^{n} \frac{\left|a\left(\lambda\left(x_{j}\right)\right)-a\left(\lambda\left(x_{j-1}\right)\right)\right|}{a\left(\lambda\left(x_{j}\right)\right)+a\left(\lambda\left(x_{j-1}\right)\right)}
$$

where the supremum is taken over all $n \geq 1, x_{o}<x_{1}<\ldots<x_{n}$.
Observe that

$$
A_{o} \sim \text { Tot.Var. }\left(\log \left(a\left(\lambda_{o}\right)\right)\right)
$$

Main result for the homogeneous system

Assume: $v_{o}(x) \geq \underline{v}>0, \lambda_{o}(x) \in[0,1]$ and define

$$
A_{o}=2 \sup \sum_{j=1}^{n} \frac{\left|a\left(\lambda\left(x_{j}\right)\right)-a\left(\lambda\left(x_{j-1}\right)\right)\right|}{a\left(\lambda\left(x_{j}\right)\right)+a\left(\lambda\left(x_{j-1}\right)\right)}
$$

where the supremum is taken over all $n \geq 1, x_{o}<x_{1}<\ldots<x_{n}$.
Observe that

$$
A_{o} \sim \text { Tot.Var. }\left(\log \left(a\left(\lambda_{o}\right)\right)\right)
$$

Theorem 1: For a suitable decreasing function $H:(0,1 / 2] \rightarrow[0, \infty)$, if

$$
\begin{aligned}
& A_{o}<\frac{1}{2} \\
& \text { Tot.Var. }\left(\log p_{o}\right)+\frac{1}{\inf a_{o}} \text { Tot.Var. } u_{o}<H\left(A_{o}\right),
\end{aligned}
$$

then the Cauchy problem for (\mathbf{H}) has a weak entropic solution (v, u, λ) defined for $t \geq 0$, with uniformly bounded total variation.

The function H can be explicitly computed. It satisfies

$$
H:(0,1 / 2] \rightarrow[0, \infty), \quad H(1 / 2)=0, \quad \lim _{A \rightarrow 0+} H(A)=+\infty
$$

Note that: the smaller is A_{o}, the larger is $H\left(A_{o}\right)$ (recall Nishida-Smoller).

Graph of $H\left(A_{o}\right)$:

The function H can be explicitly computed. It satisfies

$$
H:(0,1 / 2] \rightarrow[0, \infty), \quad H(1 / 2)=0, \quad \lim _{A \rightarrow 0+} H(A)=+\infty
$$

Note that: the smaller is A_{o}, the larger is $H\left(A_{o}\right)$ (recall Nishida-Smoller).

Graph of $H\left(A_{o}\right)$:

[Amadori, Corli, SIAM J. Math. Anal., 2008]

The Riemann problem

- The Cauchy problem for

$$
\begin{cases}v_{t}-u_{x} & =0 \\ u_{t}+\left(\frac{a^{2}(\lambda)}{v}\right)_{x} & =0 \\ \lambda_{t} & =0\end{cases}
$$

$$
(v, u, \lambda)(0, x)= \begin{cases}\left(v_{\ell}, u_{\ell}, \lambda_{\ell}\right) & x<0 \\ \left(v_{r}, u_{r}, \lambda_{r}\right) & x>0\end{cases}
$$

can be solved for any pair of initial data (with $v_{\ell}, v_{r}>0$ and $\lambda_{\ell}, \lambda_{r} \in[0,1]$).

The Riemann problem

- The Cauchy problem for

$$
\begin{cases}v_{t}-u_{x} & =0 \\ u_{t}+\left(\frac{a^{2}(\lambda)}{v}\right)_{x} & =0 \\ \lambda_{t} & =0\end{cases}
$$

$$
(v, u, \lambda)(0, x)= \begin{cases}\left(v_{\ell}, u_{\ell}, \lambda_{\ell}\right) & x<0 \\ \left(v_{r}, u_{r}, \lambda_{r}\right) & x>0\end{cases}
$$

can be solved for any pair of initial data (with $v_{\ell}, v_{r}>0$ and $\lambda_{\ell}, \lambda_{r} \in[0,1]$).

■ Phase waves are stationary: p, u are conserved across them (a "kinetic condition").

| $p_{\ell}=p_{r}$ |
| :--- | :--- |
| $u_{\ell}=u_{r}$ |

■ Strength of the 1-, 3- waves:

$$
\left|\varepsilon_{1,3}\right|=\frac{1}{2}\left|\log \left(\frac{v_{r}}{v_{\ell}}\right)\right|=\frac{1}{2}\left|\log \left(\frac{p_{r}}{p_{\ell}}\right)\right| .
$$

■ Strength of the 1-, 3- waves:

$$
\left|\varepsilon_{1,3}\right|=\frac{1}{2}\left|\log \left(\frac{v_{r}}{v_{\ell}}\right)\right|=\frac{1}{2}\left|\log \left(\frac{p_{r}}{p_{\ell}}\right)\right| .
$$

$\Rightarrow \quad$ Since p is constant across 2-waves, then

$$
\sum_{i=1,3}\left|\varepsilon_{i}\right| \sim \text { Tot. Var. } \log p
$$

■ Strength of the 1-, 3- waves:

$$
\left|\varepsilon_{1,3}\right|=\frac{1}{2}\left|\log \left(\frac{v_{r}}{v_{\ell}}\right)\right|=\frac{1}{2}\left|\log \left(\frac{p_{r}}{p_{\ell}}\right)\right| .
$$

$\Rightarrow \quad$ Since p is constant across 2-waves, then

$$
\sum_{i=1,3}\left|\varepsilon_{i}\right| \sim \text { Tot.Var. } \log p
$$

- Strength of the 2- waves:

$$
\varepsilon_{2}=2 \frac{a\left(\lambda_{r}\right)-a\left(\lambda_{\ell}\right)}{a\left(\lambda_{r}\right)+a\left(\lambda_{\ell}\right)}
$$

Interactions with phase waves

Interactions with phase waves

Lemma:

$$
\left|\varepsilon_{j}\right| \leq \frac{1}{2}\left|\delta_{2}\right| \cdot\left|\delta_{i}\right| \quad i, j=1,3, i \neq j
$$

Interactions with phase waves

Lemma:

$$
\begin{gathered}
\left|\varepsilon_{j}\right| \leq \frac{1}{2}\left|\delta_{2}\right| \cdot\left|\delta_{i}\right| \quad i, j=1,3, i \neq j \\
\left|\varepsilon_{1}\right|+\left|\varepsilon_{3}\right| \leq \begin{cases}\left|\delta_{1}\right|+\left|\delta_{1}\right|\left[\delta_{2}\right]_{+} & \text {if } 1 \text { interacts }, \\
\left|\delta_{3}\right|+\left|\delta_{3}\right|\left[\delta_{2}\right]_{-} & \text {if } 3 \text { interacts. } .\end{cases}
\end{gathered}
$$

Interactions with phase waves

Lemma:

$$
\begin{gathered}
\left|\varepsilon_{j}\right| \leq \frac{1}{2}\left|\delta_{2}\right| \cdot\left|\delta_{i}\right| \quad i, j=1,3, i \neq j \\
\left|\varepsilon_{1}\right|+\left|\varepsilon_{3}\right| \leq \begin{cases}\left.\left|\delta_{1}\right|+\left|\delta_{1}\right| \mid \delta_{2}\right]_{+} & \text {if } 1 \text { interacts }, \\
\left|\delta_{3}\right|+\left|\delta_{3}\right|\left[\delta_{2}\right]_{-} & \text {if } 3 \text { interacts. } .\end{cases}
\end{gathered}
$$

- The reflected wave may be very large.
- The variation $\left|\varepsilon_{1}\right|+\left|\varepsilon_{3}\right|-\left|\delta_{i}\right|$ may increase iff δ_{i} is moving toward a more liquid region.

Interactions of sonic waves - 1

- Waves of different families (1 or 3) cross each other without changing their strength:

Interactions of sonic waves - 1

- Waves of different families (1 or 3) cross each other without changing their strength:

- Waves of the same family:
$\left|\varepsilon_{1}\right|+\left|\varepsilon_{3}\right| \leq\left|\alpha_{3}\right|+\left|\beta_{3}\right|$

Interactions of sonic waves - 1

- Waves of different families (1 or 3) cross each other without changing their strength:

- Waves of the same family:
$\left|\varepsilon_{1}\right|+\left|\varepsilon_{3}\right| \leq\left|\alpha_{3}\right|+\left|\beta_{3}\right|$

\Rightarrow If λ is constant (no 2 -waves are present),
then $L(t)=\sum_{i=1,3}\left|\varepsilon_{i}\right|$ is not increasing [Nishida 68].

Interactions of sonic waves - 1

- Waves of different families (1 or 3) cross each other without changing their strength:

- Waves of the same family:

$$
\left|\varepsilon_{1}\right|+\left|\varepsilon_{3}\right| \leq\left|\alpha_{3}\right|+\left|\beta_{3}\right|
$$

\Rightarrow If λ is constant (no 2 -waves are present), then $L(t)=\sum_{i=1,3}\left|\varepsilon_{i}\right|$ is not increasing [Nishida 68].

However, large reflected waves may interact with phase waves, producing even larger waves...
\Rightarrow Needed: improved estimates on the reflected waves.

Interactions of sonic waves - 2

Lemma: Let two waves of the same family, of sizes α_{i} and $\beta_{i}(i=1,3)$ interact, producing $\varepsilon_{1}, \varepsilon_{3}$; assume that for $m>0$

$$
\left|\alpha_{i}\right|<m, \quad\left|\beta_{i}\right|<m .
$$

Interactions of sonic waves - 2

Lemma: Let two waves of the same family, of sizes α_{i} and $\beta_{i}(i=1,3)$ interact, producing $\varepsilon_{1}, \varepsilon_{3}$; assume that for $m>0$

$$
\left|\alpha_{i}\right|<m, \quad\left|\beta_{i}\right|<m .
$$

Then there exists a damping coefficient $d=d(m)$, with $0<d(m)<1$, s.t.

$$
\left|\varepsilon_{j}\right| \leq d(m) \cdot \min \left\{\left|\alpha_{i}\right|,\left|\beta_{i}\right|\right\}, \quad j \neq i .
$$

Interactions of sonic waves - 2

Lemma: Let two waves of the same family, of sizes α_{i} and $\beta_{i}(i=1,3)$ interact, producing $\varepsilon_{1}, \varepsilon_{3}$; assume that for $m>0$

$$
\left|\alpha_{i}\right|<m, \quad\left|\beta_{i}\right|<m .
$$

Then there exists a damping coefficient $d=d(m)$, with $0<d(m)<1$, s.t.

$$
\left|\varepsilon_{j}\right| \leq d(m) \cdot \min \left\{\left|\alpha_{i}\right|,\left|\beta_{i}\right|\right\}, \quad j \neq i .
$$

Note: $\quad d(m) \rightarrow 1$ as $m \rightarrow \infty$

The algorithm

Use a suitable version of a wave-front tracking algorithm (mainly from Bressan (2000) and Amadori-Guerra (2001)):

■ approximate the initial data with piecewise constant functions;

The algorithm

Use a suitable version of a wave-front tracking algorithm (mainly from Bressan (2000) and Amadori-Guerra (2001)):

■ approximate the initial data with piecewise constant functions;
■ solve the interactions of sonic waves (families 1 and 3) always with the accurate RS;

The algorithm

Use a suitable version of a wave-front tracking algorithm (mainly from Bressan (2000) and Amadori-Guerra (2001)):

■ approximate the initial data with piecewise constant functions;
■ solve the interactions of sonic waves (families 1 and 3) always with the accurate RS;

■ solve the interactions with the stationary phase waves (family 2) both with the accurate and the simplified RS, introducing non-physical waves;

The algorithm

Use a suitable version of a wave-front tracking algorithm (mainly from Bressan (2000) and Amadori-Guerra (2001)):

- approximate the initial data with piecewise constant functions;

■ solve the interactions of sonic waves (families 1 and 3) always with the accurate RS;
■ solve the interactions with the stationary phase waves (family 2) both with the accurate and the simplified RS, introducing non-physical waves;

The functionals

Introduce $\xi \geq 1, K \geq 0$ and define

$$
\begin{aligned}
L_{\xi} & =\sum_{i=1,3, \text { rar }}\left|\gamma_{i}\right|+\xi \sum_{i=1,3, \mathrm{sh}}\left|\gamma_{i}\right|+K_{n p} \sum_{\gamma \in \mathcal{N P}}|\gamma| \\
Q & =\sum_{\gamma_{i}, \delta_{2} \text { approaching }, i=1,3}\left|\gamma_{i}\right|\left|\delta_{2}\right| \\
F & =L_{\xi}+K Q \sim \text { Tot.Var. }(\log p, u)
\end{aligned}
$$

The functionals

Introduce $\xi \geq 1, K \geq 0$ and define

$$
\begin{aligned}
L_{\xi} & =\sum_{i=1,3, \text { rar }}\left|\gamma_{i}\right|+\xi \sum_{i=1,3, \mathrm{sh}}\left|\gamma_{i}\right|+K_{n p} \sum_{\gamma \in \mathcal{N P}}|\gamma| \\
Q & =\sum_{\gamma_{i}, \delta_{2} \text { approaching }, i=1,3}\left|\gamma_{i}\right|\left|\delta_{2}\right| \\
F & =L_{\xi}+K Q \sim \text { Tot.Var. }(\log p, u)
\end{aligned}
$$

- After a suitable choice of the coefficients ξ and K (neither too small, nor too large), one finds

$$
\Delta F(t) \leq 0 \quad \text { for all } t
$$

Convergence and consistence

■ Prove that the number of interactions is finite in finite time.

Convergence and consistence

\square Prove that the number of interactions is finite in finite time.

- Control the total size of non-physical fronts.

Keep trace the generation order of waves:

$$
\max \{h, k\}+1
$$

Convergence and consistence

■ Prove that the number of interactions is finite in finite time.

- Control the total size of non-physical fronts.

Keep trace the generation order of waves:

Lemma [A contraction property]
For some $0<\mu<1$, and for every $k \in \mathbb{N}$,
[total strength of waves with generation order $\geq k] \leq \mu^{k-1} \cdot F(0)$.

Convergence and consistence

■ Prove that the number of interactions is finite in finite time.

- Control the total size of non-physical fronts.

Keep trace the generation order of waves:

Lemma [A contraction property]
For some $0<\mu<1$, and for every $k \in \mathbb{N}$,
[total strength of waves with generation order $\geq k] \leq \mu^{k-1} \cdot F(0)$.

- Pass to the limit by compactness.

The system with a reaction term

We come back to the complete system:

$$
\text { (HS) } \quad \begin{cases}v_{t}-u_{x} & =0 \\ u_{t}+p(v, \lambda)_{x} & =0 \\ \lambda_{t} & =\frac{1}{\tau} g(p, \lambda), \quad g=\left(p-p_{e}\right) \lambda(\lambda-1)\end{cases}
$$

The system with a reaction term

We come back to the complete system:

$$
\text { (HS) } \begin{cases}v_{t}-u_{x} & =0 \\ u_{t}+p(v, \lambda)_{x} & =0 \\ \lambda_{t} & =\frac{1}{\tau} g(p, \lambda), \quad g=\left(p-p_{e}\right) \lambda(\lambda-1)\end{cases}
$$

Let $E=\{(v, u, \lambda): g=0\}$ be the set of equilibrium points of the source term. It consists of 3 subsets:

■ $E_{o}, \lambda=0$, liquid phase: the system reduces to

$$
v_{t}-u_{x}=0, \quad u_{t}+p(v, 0)_{x}=0
$$

The system with a reaction term

We come back to the complete system:

$$
\text { (HS) } \begin{cases}v_{t}-u_{x} & =0 \\ u_{t}+p(v, \lambda)_{x} & =0 \\ \lambda_{t} & =\frac{1}{\tau} g(p, \lambda), \quad g=\left(p-p_{e}\right) \lambda(\lambda-1)\end{cases}
$$

Let $E=\{(v, u, \lambda): g=0\}$ be the set of equilibrium points of the source term. It consists of 3 subsets:

■ $E_{o}, \lambda=0$, liquid phase: the system reduces to

$$
v_{t}-u_{x}=0, \quad u_{t}+p(v, 0)_{x}=0
$$

■ $E_{1}, \lambda=1$, vapor phase

The system with a reaction term

We come back to the complete system:

$$
\text { (HS) } \begin{cases}v_{t}-u_{x} & =0 \\ u_{t}+p(v, \lambda)_{x} & =0 \\ \lambda_{t} & =\frac{1}{\tau} g(p, \lambda), \quad g=\left(p-p_{e}\right) \lambda(\lambda-1)\end{cases}
$$

Let $E=\{(v, u, \lambda): g=0\}$ be the set of equilibrium points of the source term. It consists of 3 subsets:

■ $E_{o}, \lambda=0$, liquid phase: the system reduces to

$$
v_{t}-u_{x}=0, \quad u_{t}+p(v, 0)_{x}=0
$$

- $E_{1}, \lambda=1$, vapor phase

■ E_{p}, equilibrium pressure. Here the system reduces to

$$
p=p_{e}, \quad u=\text { const. }, \quad \lambda=\lambda(x)
$$

The case $\lambda \sim 0$

For $\tau>0$ fixed, we focus on the case $\lambda \sim 0$. From the equation

$$
\lambda_{t}=\frac{1}{\tau}\left(p-p_{e}\right) \lambda(\lambda-1),
$$

note that the sign of $\left(p-p_{e}\right)$ determines the behavior of the equation for λ : provided that

$$
p-p_{e} \geq c>0, \quad \lambda \leq \mu<1
$$

then we get

$$
\lambda_{t} \leq-\frac{c}{\tau}(1-\mu) \lambda
$$

and the contribution of the source term decays exponentially in time.

The case $\lambda \sim 0$

For $\tau>0$ fixed, we focus on the case $\lambda \sim 0$. From the equation

$$
\lambda_{t}=\frac{1}{\tau}\left(p-p_{e}\right) \lambda(\lambda-1),
$$

note that the sign of $\left(p-p_{e}\right)$ determines the behavior of the equation for λ : provided that

$$
p-p_{e} \geq c>0, \quad \lambda \leq \mu<1
$$

then we get

$$
\lambda_{t} \leq-\frac{c}{\tau}(1-\mu) \lambda
$$

and the contribution of the source term decays exponentially in time.
[Dafermos\& Hsiao, 1982]

The case $\lambda \sim 0$

Theorem 2: For $\tau>0$ fixed, assume that:

$$
\begin{gathered}
\inf v_{o}(x)>0, \quad \inf p_{o}(x)>p_{e} \\
\text { Tot.Var. }\left(\log \left(p_{o}\right)\right)+\frac{1}{\inf a_{o}} \text { Tot.Var. }\left(u_{o}\right)<\log p_{o}(-\infty)-\log p_{e}
\end{gathered}
$$

and that

$$
\left\|\lambda_{o}\right\|_{\infty}, \quad \text { Tot.Var. } \lambda_{o}
$$

are sufficiently small.

The case $\lambda \sim 0$

Theorem 2: For $\tau>0$ fixed, assume that:

$$
\inf v_{o}(x)>0, \quad \inf p_{o}(x)>p_{e}
$$

$$
\text { Tot.Var. }\left(\log \left(p_{o}\right)\right)+\frac{1}{\inf a_{o}} \text { Tot.Var. }\left(u_{o}\right)<\log p_{o}(-\infty)-\log p_{e},
$$

and that

$$
\left\|\lambda_{o}\right\|_{\infty}, \quad \text { Tot.Var. } \lambda_{o}
$$

are sufficiently small.
Then the Cauchy problem for the system (HS) has a weak entropic solution (v, u, λ) defined for $t \geq 0$, with uniformly bounded total variation.

Applying the fractional step scheme...

Applying the fractional step scheme...

■ $t \rightarrow\|\lambda(t)\|_{\infty}$ decays \Rightarrow control on Tot.Var. (p, u, λ)
\Rightarrow control on p from below

Applying the fractional step scheme...

■ $t \rightarrow\|\lambda(t)\|_{\infty}$ decays \Rightarrow control on Tot.Var. (p, u, λ)
\Rightarrow control on p from below

- For every $t>s \geq 0$, one has

$$
\begin{gathered}
\int_{a}^{b}|\lambda(x, t)-\lambda(x, s)| d x \leq L_{\tau}(t-s+\Delta t) \\
L_{\tau}=C_{1}+\frac{C_{2}}{\tau} \mathrm{e}^{-\frac{C_{3} s}{\tau}} .
\end{gathered}
$$

The relaxation limit

Theorem 3: For $\tau>0$, consider the system (HS) and the initial data

$$
(v, u, \lambda)(0, x)=\left(v_{o}^{\tau}(x), u_{o}^{\tau}(x), \lambda_{o}^{\tau}(x)\right)
$$

satisfying the bounds of Theorem 2 uniformly with respect to τ. Assume that

$$
v_{o}^{\tau} \rightarrow v_{o}, \quad u_{o}^{\tau} \rightarrow u_{o} \quad \text { in } L_{l o c}^{1}(\mathbb{R}), \quad \text { as } \tau \rightarrow 0
$$

Let $\left(v^{\tau}, u^{\tau}, \lambda^{\tau}\right)(x, t)$ be the weak entropic solution provided by Theorem 2.
Then there exists a (sub)sequence $\tau_{n} \rightarrow 0$ s. t.

The relaxation limit

Theorem 3: For $\tau>0$, consider the system (HS) and the initial data

$$
(v, u, \lambda)(0, x)=\left(v_{o}^{\tau}(x), u_{o}^{\tau}(x), \lambda_{o}^{\tau}(x)\right)
$$

satisfying the bounds of Theorem 2 uniformly with respect to τ. Assume that

$$
v_{o}^{\tau} \rightarrow v_{o}, \quad u_{o}^{\tau} \rightarrow u_{o} \quad \text { in } L_{l o c}^{1}(\mathbb{R}), \quad \text { as } \tau \rightarrow 0
$$

Let $\left(v^{\tau}, u^{\tau}, \lambda^{\tau}\right)(x, t)$ be the weak entropic solution provided by Theorem 2.
Then there exists a (sub)sequence $\tau_{n} \rightarrow 0 \mathrm{~s}$. t.

$$
\begin{array}{rlrl}
\lambda^{\tau_{n}} & \rightarrow 0 & \text { in } L_{l o c}^{1}(\mathbb{R} \times(0, \infty)) \\
\left(v^{\tau_{n}}, u^{\tau_{n}}\right) & \rightarrow(\widetilde{v}, \widetilde{u}) & & \text { in } L_{l o c}^{1}(\mathbb{R} \times[0, \infty)),
\end{array}
$$

where $(\widetilde{v}, \widetilde{u})$ is a weak solution for $t \geq 0$ to the Cauchy problem

$$
\left\{\begin{array} { l l }
{ v _ { t } - u _ { x } } & { = 0 } \\
{ u _ { t } + p (v , 0) _ { x } } & { = 0 , }
\end{array} \quad \left\{\begin{array}{l}
v(x, 0)=v_{o}(x) \\
u(x, 0)=u_{o}(x)
\end{array}\right.\right.
$$

The relaxation limit: entropies

Given

$$
\widetilde{\eta}(v, u)=\frac{u^{2}}{2}-A(0) \log v, \quad \widetilde{q}(v, u)=\frac{A(0) u}{v}
$$

(entropy-entropy flux pair for the 2×2 system with $\lambda=0$), then, for any smooth function ϕ

$$
\eta(v, u, \lambda)=\frac{u^{2}}{2}-A(\lambda) \log v+\phi(\lambda), \quad q(v, u, \lambda)=\frac{A(\lambda) u}{v}
$$

is an entropy-entropy flux pair for the complete system (HS).

The relaxation limit: entropies

Given

$$
\widetilde{\eta}(v, u)=\frac{u^{2}}{2}-A(0) \log v, \quad \widetilde{q}(v, u)=\frac{A(0) u}{v}
$$

(entropy-entropy flux pair for the 2×2 system with $\lambda=0$), then, for any smooth function ϕ

$$
\eta(v, u, \lambda)=\frac{u^{2}}{2}-A(\lambda) \log v+\phi(\lambda), \quad q(v, u, \lambda)=\frac{A(\lambda) u}{v}
$$

is an entropy-entropy flux pair for the complete system (HS).

- Under certain assumptions on ϕ, the entropy η is convex.

The relaxation limit: entropies

Given

$$
\widetilde{\eta}(v, u)=\frac{u^{2}}{2}-A(0) \log v, \quad \widetilde{q}(v, u)=\frac{A(0) u}{v}
$$

(entropy-entropy flux pair for the 2×2 system with $\lambda=0$), then, for any smooth function ϕ

$$
\eta(v, u, \lambda)=\frac{u^{2}}{2}-A(\lambda) \log v+\phi(\lambda), \quad q(v, u, \lambda)=\frac{A(\lambda) u}{v}
$$

is an entropy-entropy flux pair for the complete system (HS).

- Under certain assumptions on ϕ, the entropy η is convex.

■ Entropy inequality for $\tau>0: \quad \eta_{t}+q_{x} \leq \frac{1}{\tau} \eta_{\lambda} \cdot g(v, \lambda)$.

The relaxation limit: entropies

Given

$$
\widetilde{\eta}(v, u)=\frac{u^{2}}{2}-A(0) \log v, \quad \widetilde{q}(v, u)=\frac{A(0) u}{v}
$$

(entropy-entropy flux pair for the 2×2 system with $\lambda=0$), then, for any smooth function ϕ

$$
\eta(v, u, \lambda)=\frac{u^{2}}{2}-A(\lambda) \log v+\phi(\lambda), \quad q(v, u, \lambda)=\frac{A(\lambda) u}{v}
$$

is an entropy-entropy flux pair for the complete system (HS).

- Under certain assumptions on ϕ, the entropy η is convex.

■ Entropy inequality for $\tau>0: \quad \eta_{t}+q_{x} \leq \frac{1}{\tau} \underbrace{\eta_{\lambda} \cdot g(v, \lambda)}_{\leq 0}$.
■ For a suitable choice of ϕ, the entropy is dissipative w.r.t. the source term. Hence one can pass to the limit $\tau_{n} \rightarrow 0$ and prove that the $(\widetilde{v}, \widetilde{u})$ satisfies the entropy inequality for the 2×2 system w.r.t. $\widetilde{\eta}, \widetilde{q}$.

Final remarks

- The case $\lambda \sim 1, p<p_{e}$.

Final remarks

- The case $\lambda \sim 1, p<p_{e}$.

■ The case $p \sim p_{e}$.

Final remarks

- The case $\lambda \sim 1, p<p_{e}$.
- The case $p \sim p_{e}$.
- Smooth solutions for small C^{1} data with $p(x) \rightarrow p_{e}$ as $x \rightarrow \pm \infty$. Do they exist for all times? Shizuta-Kawashima condition is not satisfied at $p=p_{e}$: here

$$
\text { ker } D G\left(U_{o}\right) \cap\left\{\text { eigenspaces of } D F\left(U_{o}\right)\right\} \neq\{0\}
$$

where $G=(0,0, g(v, \lambda))$ and $F=(-u, p, 0)$.
[Natalini-Hanouzet 2003]

Final remarks

- The case $\lambda \sim 1, p<p_{e}$.
- The case $p \sim p_{e}$.
- Smooth solutions for small C^{1} data with $p(x) \rightarrow p_{e}$ as $x \rightarrow \pm \infty$. Do they exist for all times?
Shizuta-Kawashima condition is not satisfied at $p=p_{e}$: here

$$
\text { ker } D G\left(U_{o}\right) \cap\left\{\text { eigenspaces of } D F\left(U_{o}\right)\right\} \neq\{0\}
$$

where $G=(0,0, g(v, \lambda))$ and $F=(-u, p, 0)$.
[Natalini-Hanouzet 2003]

- Weak solutions

Related problems

■ Extend the analysis to more general pressure laws.

Related problems

■ Extend the analysis to more general pressure laws.

- Are the sufficient conditions given in the Theorem 1 also necessary? Does blow up occur?

Related problems

■ Extend the analysis to more general pressure laws.

- Are the sufficient conditions given in the Theorem 1 also necessary? Does blow up occur?
- Uniqueness, continuous dependence

Related problems

■ Extend the analysis to more general pressure laws.

- Are the sufficient conditions given in the Theorem 1 also necessary? Does blow up occur?
- Uniqueness, continuous dependence

Related problems

■ Extend the analysis to more general pressure laws.

- Are the sufficient conditions given in the Theorem 1 also necessary? Does blow up occur?
- Uniqueness, continuous dependence

Thank you!!

