On Nonlinear Dispersive Equations in Periodic Structures: Semiclassical Limits and Numerical Methods

Peter A. Markowich

Department of Applied Mathematics and Theoretical Physics, University of Cambridge

June 6, 2008

P. A. Markowich (DAMTP,U. of Cambridge

Nonlinear Dispersive Equations

The linear Schrödinger Equation '26

$$\begin{cases} i\varepsilon\psi_t = -\frac{\varepsilon^2}{2}\Delta\psi + V(x)\psi , x \in \mathbb{R}^d, \quad t \in \mathbb{R} \\ \psi(x, t = 0) = \psi_I^\varepsilon \quad (= \sqrt{\rho_I(x)}\exp\left(\frac{i}{\varepsilon}S(x)\right) \end{cases}$$

 ψ ... complex-valued wave function $\varepsilon > 0$...semiclassical parameter, << 1V = V(x)...real-valued potential field

The linear Schrödinger Equation '26

$$\begin{cases} i\varepsilon\psi_t = -\frac{\varepsilon^2}{2}\Delta\psi + V(x)\psi , x \in \mathbb{R}^d, \quad t \in \mathbb{R} \\ \psi(x,t=0) = \psi_I^\varepsilon \quad (=\sqrt{\rho_I(x)}\exp\left(\frac{i}{\varepsilon}S(x)\right) \end{cases}$$

$$\psi$$
... complex-valued wave function
 $\varepsilon > 0$...semiclassical parameter, $<< 1$
 $V = V(x)$...real-valued potential field

(averages of) observables are quadratic function(al)s of the wave function, e.g.:

- position density: $\rho = |\psi|^2$,
- current density: $\mathcal{I} = \varepsilon \operatorname{Im}(\overline{\psi} \nabla \psi).$

イロト 不得 とうせい かほとう ほ

Free Schrödinger Equation: $V \equiv 0$

$$\left\{ \begin{array}{ll} i\varepsilon\psi_t = -\frac{\varepsilon^2}{2}\Delta\psi \quad , \ x\in\mathbb{R}^d \ , \quad t\in\mathbb{R} \\ \psi(x,t=0) = \exp\left(\frac{ik\cdot x}{\varepsilon}\right) \quad \text{plane wave, wave-vector } \frac{k}{\varepsilon} \end{array} \right.$$

Free Schrödinger Equation: $V \equiv 0$

$$\begin{cases} i\varepsilon\psi_t = -\frac{\varepsilon^2}{2}\Delta\psi &, x\in\mathbb{R}^d, t\in\mathbb{R} \\ \psi(x,t=0) = \exp\left(\frac{ik\cdot x}{\varepsilon}\right) \text{ plane wave, wave-vector } \frac{k}{\varepsilon} \\ \psi(x,t) = \exp\left(i\underbrace{\left(k\cdot\frac{x}{\varepsilon} - \frac{|k|^2}{2}\frac{t}{\varepsilon}\right)}_{\text{space-time}}\right) \\ \text{space-time} \\ O(\varepsilon)\text{-wave} \\ \text{length} \\ \text{oscillations} \end{cases}$$

P. A. Markowich (DAMTP,U. of Cambridge

Nonlinear Dispersive Equations

June 6, 2008 3 / 38

- 34

Free Schrödinger Equation: $V \equiv 0$

$$\begin{cases} i\varepsilon\psi_t = -\frac{\varepsilon^2}{2}\Delta\psi , x \in \mathbb{R}^d, t \in \mathbb{R} \\ \psi(x, t = 0) = \exp\left(\frac{ik \cdot x}{\varepsilon}\right) \text{ plane wave, wave-vector } \frac{k}{\varepsilon} \\ \psi(x, t) = \exp\left(i\underbrace{\left(k \cdot \frac{x}{\varepsilon} - \frac{|k|^2}{2}\frac{t}{\varepsilon}\right)}_{\text{space-time}}\right) \\ \sup_{\substack{O(\varepsilon) \text{-wave} \\ \text{length} \\ \text{oscillations}} \\ E(k) = \frac{|k|^2}{2} \quad \dots \text{dispersion relation} \\ V \neq 0 \quad \Rightarrow \text{ no explicit computation!} \end{cases}$$

- 34

W(entzel)-K(ramers)-B(rillouin)-ansatz

$$\psi = \sqrt{\rho} e^{i\frac{S}{\epsilon}}$$

$$\begin{cases} \rho_t + \operatorname{div}(\rho \nabla S) = 0\\ S_t + \frac{1}{2} |\nabla S|^2 + V(x) = \frac{\varepsilon^2}{2} \frac{\Delta \sqrt{\rho}}{\sqrt{\rho}} \end{cases}$$

transport equation phase equation

equivalently, with $v := \nabla S$:

$$\begin{cases} \rho_t + \operatorname{div}(\rho v) = 0\\ v_t + \nabla \left(\frac{|v|^2}{2} + V(x)\right) = \frac{\varepsilon^2}{2} \nabla \left(\frac{\Delta \sqrt{\rho}}{\sqrt{\rho}}\right) \end{cases}$$

quantum hydrodynamic equations,

dispersively regularized irrotational compressible Euler system, with external pressure $\nabla V(x)$ and internal quantum pressure $-\frac{\varepsilon^2}{2}\nabla\left(\frac{\Delta\sqrt{\rho}}{\sqrt{\rho}}\right)$.

イロト 不得 トイヨト イヨト 二日

Formal semiclassical (zero-dispersion) limit $\varepsilon \rightarrow 0$

transport equation

$$\begin{array}{c} \downarrow \\ \rho_t^0 + \operatorname{div}(\rho^0 \nabla S^0) = 0 \\ S_t^0 + \frac{1}{2} |\nabla S^0|^2 + V(x) = 0 \end{array} \right\} \quad \text{WKB-system} \\ \uparrow \end{array}$$

Hamilton-Jacobi equation

$$\left. \begin{array}{l} \rho_t^0 + \operatorname{div}(\rho^0 v^0) = 0 \\ v_t^0 + \nabla \left(\frac{|v^0|^2}{2} + V(x) \right) = 0 \end{array} \right\}$$

irrotational compressible Euler-system with external pressure

problem: the solution S^0 of the HJ-equation generally develops finite-time singularities!

Theorem

(J. Keller, P. Lax, ..., '50): Let $T_c > 0$ be the caustic onset time of the HJ-equation. Then $\left\| \psi - \sqrt{\rho^0} \exp\left(i\frac{S^0}{\varepsilon}\right) \right\|_{L^{\infty}((0,T);L^2(\mathbb{R}^d))} = \mathcal{O}(\varepsilon)$ if $0 < T < T_c$.

Theorem

(J. Keller, P. Lax, ..., '50): Let $T_c > 0$ be the caustic onset time of the HJ-equation. Then $\left\| \psi - \sqrt{\rho^0} \exp\left(i\frac{S^0}{\varepsilon}\right) \right\|_{L^{\infty}((0,T);L^2(\mathbb{R}^d))} = \mathcal{O}(\varepsilon)$ if $0 < T < T_c$.

beyond caustics:

- V. Maslov '60: phase shifts
- P. Gerard, P. Markowich, N. Mauser, F. Poupaud, P.L. Lions, T. Paul, C. Sparber '90-'08: semiclassical (Wigner) measures
- S. Jin, S. Osher '02-'08; C. Sparber, P. Markowich, N. Mauser '01: multi-valued solutions of HJ-equations

Semiclassical (Wigner) Measures

Definition

Let $\psi^{\varepsilon} \in L^{2}(\mathbb{R}^{d})$ be a sequence of wave functions and $(\varepsilon) \to 0$ a scale. Then $w \in \mathcal{M}^{+}(\mathbb{R}^{d}_{x} \times \mathbb{R}^{d}_{\xi})$ is called a semiclassical measure of ψ^{ε} on the scale (ε) if for all $a \in \mathcal{S}(\mathbb{R}^{d}_{x} \times \mathbb{R}^{d}_{\xi})$, along a subsequence:

$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}^d} \psi^{\varepsilon}(x) a^w(x, \varepsilon D) \psi^{\varepsilon} \, dx = \int_{\mathbb{R}^d_x \times \mathbb{R}^d_{\xi}} a(x, \xi) w(dx, d\xi)$$

Semiclassical (Wigner) Measures

Definition

Let $\psi^{\varepsilon} \in L^{2}(\mathbb{R}^{d})$ be a sequence of wave functions and $(\varepsilon) \to 0$ a scale. Then $w \in \mathcal{M}^{+}(\mathbb{R}^{d}_{x} \times \mathbb{R}^{d}_{\xi})$ is called a semiclassical measure of ψ^{ε} on the scale (ε) if for all $a \in \mathcal{S}(\mathbb{R}^{d}_{x} \times \mathbb{R}^{d}_{\xi})$, along a subsequence:

$$\lim_{\varepsilon\to 0}\int_{\mathbb{R}^d}\psi^\varepsilon(x)a^w(x,\varepsilon D)\psi^\varepsilon\ dx=\int_{\mathbb{R}^d_x\times\mathbb{R}^d_\xi}a(x,\xi)w(dx,d\xi).$$

Theorem

('80 folklore) The semiclassical measure(s) $w = w(x, \xi, t)$ of the solution $\psi^{\varepsilon}(t)$ of the IVP-problem for the Schrödinger equation satisfies(y) the Liouville equation

$$\left\{ egin{array}{ll} w_t + \xi \cdot
abla_x w -
abla_x V \cdot
abla_\xi w = 0 & on & \mathbb{R}^d_x imes \mathbb{R}^d_\xi imes \mathbb{R}_t \\ w(t=0) = w_I & (a \ semiclassical \ measure \ of \ \psi^\varepsilon_I). \end{array}
ight.$$

Nonlinear Dispersive Equations

Connection to WKB-Asymptotics:

If
$$\psi_I(x) = \sqrt{\rho_I(x)} \exp\left(\frac{S_I(x)}{\varepsilon}\right)$$
, then $w_I(x,\xi) = \rho_I(x)\delta(\xi - \nabla S_I(x))$.

The solution of the Liouville equation stays monokinetic

$$w(x,\xi,t) = \rho^0(x,t)\delta(\xi - \nabla S^0(x,t))$$

as long as S^0 is the smooth solution of the HJ-equation

$$\begin{cases} S_t^0 + \frac{1}{2} |\nabla S^0|^2 + V(x) = 0\\ S^0(x, t = 0) = S_I(x) . \end{cases}$$

After caustic onset: multi-valued solution theory (C. Sparber, P. Markowich, N. Mauser '02; S. Jin, S. Osher '04)!

Nonlinear Schrödinger Equations: $V = f(\rho)$

$$\begin{cases} i\varepsilon\psi_t = -\frac{\varepsilon^2}{2}\Delta\psi + f(|\psi|^2)\psi, & x\in\mathbb{R}^d, \quad t>0, \\ \psi(t=0) = \sqrt{\rho_I}\exp\left(i\frac{S_I}{\varepsilon}\right), & \rho_I, S_I \text{ smooth} \end{cases}$$

formal (compressible, isentropic, irrotational) Euler limit as $\varepsilon \rightarrow 0$:

$$\begin{cases} \rho_t^0 + \operatorname{div}(\rho^0 v^0) = 0 , \quad \rho^0(t=0) = \rho_I , \\ v_t^0 + \nabla \left(\frac{1}{2}|v^0|^2 + f(\rho^0)\right) = 0 , \quad v^0(t=0) = \nabla S_I \end{cases}$$

P. A. Markowich (DAMTP,U. of Cambridge Nonlinear

イロト 不得 とうせい かほとう ほ

Nonlinear Schrödinger Equations: $V = f(\rho)$

$$\begin{cases} i\varepsilon\psi_t = -\frac{\varepsilon^2}{2}\Delta\psi + f(|\psi|^2)\psi, & x\in\mathbb{R}^d, \quad t>0, \\ \psi(t=0) = \sqrt{\rho_I}\exp\left(i\frac{S_I}{\varepsilon}\right), & \rho_I, S_I \text{ smooth} \end{cases}$$

formal (compressible, isentropic, irrotational) Euler limit as $\varepsilon \rightarrow 0$:

$$\begin{cases} \rho_t^0 + \operatorname{div}(\rho^0 v^0) = 0 , \quad \rho^0(t=0) = \rho_I , \\ v_t^0 + \nabla \left(\frac{1}{2} |v^0|^2 + f(\rho^0) \right) = 0 , \quad v^0(t=0) = \nabla S_I \end{cases}$$

Theorem

(E. Grenier '98; R. Carles '07): f' > 0 on \mathbb{R}^+ . Let T > 0 be smaller than the maximal existence time (of smooth solutions) of the irrotational isentropic Euler system. Then

$$\left\|\psi - \sqrt{\rho^0} \exp\left(i\frac{S^0}{\varepsilon}\right)\right\|_{L^\infty((0,T); H^s(\mathbb{R}^d))} \xrightarrow{\varepsilon \to 0} 0 \quad \text{for some } s > 0 \; .$$

Proof: Theory of symmetric hyperbolic systems, energy estimates.

Semiclassical Limits in Periodic Structures

Figure: Periodic crystal lattice, $\delta\Gamma \cong \delta\mathbb{Z}^d$, fundamental domain δC

Figure: Electrons moving in a periodic lattice potential, $V_{\Gamma} = V_{\Gamma}(x/\delta)$.

June 6, 2008 13 / 38

Semiclassical Limits in Periodic Structures

Figure: Periodic crystal lattice, $\delta \Gamma \cong \delta \mathbb{Z}^d$, fundamental domain δC

Figure: Electrons moving in a periodic lattice potential, $V_{\Gamma} = V_{\Gamma}(x/\delta).$

Assumption: lattice spacing δ =semiclassical parameter ε

NLS:
$$i\varepsilon\psi_t = -\frac{\varepsilon^2}{2}\Delta\psi + \underbrace{V_{\Gamma}\left(\frac{x}{\varepsilon}\right)\psi + V(x)\psi}_{\text{binary Interactions}} + \underbrace{\kappa(\varepsilon)|\psi|^2\psi}_{\text{binary Interactions}} = \underbrace{\varepsilon_{\Gamma}(\varepsilon)|\psi|^2\psi}_{\text{binary I$$

P. A. Markowich (DAMTP,U. of Cambridge

Nonlinear Dispersive Equations

The Failure of the Standard WKB-Method

Linear case $\kappa = 0$:

$$\begin{split} i\varepsilon\psi_t &= -\frac{\varepsilon^2}{2}\Delta\psi + V_{\Gamma}\left(\frac{x}{\varepsilon}\right)\psi + V(x)\psi \,, \quad \psi = \sqrt{\rho} \; e^{i\frac{S}{\varepsilon}} \\ \begin{cases} \rho_t + \operatorname{div}(\rho\nabla S) = 0\\ S_t + \frac{1}{2}|\nabla S|^2 + V_{\Gamma}\left(\frac{x}{\varepsilon}\right) + V(x) = \frac{\varepsilon^2}{2}\frac{\Delta\sqrt{\rho}}{\sqrt{\rho}} \end{split}$$

The Failure of the Standard WKB-Method

Linear case $\kappa = 0$:

Homogenisation theory based on viscosity solutions:

$$S_t^0 + \overline{H}(x, \nabla S^0) = 0$$

< □ > < 同 > < 回 >

3

14 / 38

- Effective Hamiltonian $\overline{H} = \overline{H}(x, \xi)$: obtained by solving a stationary HJ-equation on a lattice cell.
- References: P.L. Lions, G. Papanicolaou, S. Varadhan '96; D. Gomes, L. Evans, P. Souganidis, P.L Lions '02-'08.
- Problem: viscosity solutions are based on a notion of dissipativity ⇒ loss of reversibility! But: the Schrödinger equation is time reversible!

Bloch-Spectral Decomposition

$$L^2(\mathbb{R}^d) = \bigoplus_{m=1}^{\infty} S_m , \quad S_m \cong L^2(B)$$

B (bounded)...Brillouin zone, fundamental domain of Γ^*

$$\psi(y) = \sum_{m=1}^{\infty} \frac{1}{|B|} \int_{B} \mathring{\psi}_{m}(k) \Psi_{m}(y,k) \ dk$$

$$\begin{cases} -\frac{1}{2}\Delta_{y}\Psi_{m}(y,k) + V_{\Gamma}(y)\Psi_{m}(y,k) = E_{m}(k)\Psi_{m}(y,k) \\ \Psi_{m}(y+\gamma,k) = e^{i\gamma \cdot k}\Psi_{m}(y,k) \quad \forall \ \gamma \in \Gamma \ , \quad y \in \mathbb{R}^{d} \ , \quad k \in B \end{cases}$$

quasiperiodic Bloch eigenvalue problem

$$E_1(k) \leq E_2(k) \leq \ldots \leq E_m(k) \leq E_{m+1}(k) \leq \ldots$$
 Bloch bands
 $\Psi_m(y,k) = e^{ik \cdot y} \chi_m(y,k)$ Bloch-eigenfunctions
 \uparrow
 Γ -periodicity in y , Γ^* -periodicity in k

Nonlinear Dispersive Equations

band gaps! intersections of Bloch bands!

• Mathieu-equation: $V_{\Gamma}(y) = \cos(y)$ (left)

• Kronig-Penney model: $V_{\Gamma}(y) = 1 - \sum_{j \in \mathbb{Z}} \chi_{[\frac{\pi}{2} + 2j\pi, \frac{3\pi}{2} + 2j\pi]}$ (right)

(P. Gerard, P. Markowich, N. Mauser, F. Poupaud '96)

$$\begin{split} y &= \frac{x}{\varepsilon} \Rightarrow S_m \to S_m^{\varepsilon} \\ \psi &= \sum \psi_m , \quad \psi_m \in S_m^{\varepsilon} \\ i\varepsilon\psi_t &= -\frac{\varepsilon^2}{2}\Delta\psi + V_{\Gamma}\left(\frac{x}{\varepsilon}\right)\psi \Leftrightarrow i\varepsilon\frac{\partial}{\partial t}\psi_m = E_m(\varepsilon D)\psi_m , \quad m = 1, 2, \dots \end{split}$$

P. A. Markowich (DAMTP,U. of Cambridge

Nonlinear Dispersive Equations

June 6, 2008 18 / 38

3

(P. Gerard, P. Markowich, N. Mauser, F. Poupaud '96)

$$\begin{split} y &= \frac{x}{\varepsilon} \Rightarrow S_m \to S_m^{\varepsilon} \\ \psi &= \sum \psi_m , \quad \psi_m \in S_m^{\varepsilon} \\ i\varepsilon\psi_t &= -\frac{\varepsilon^2}{2}\Delta\psi + V_{\Gamma}\left(\frac{x}{\varepsilon}\right)\psi \Leftrightarrow i\varepsilon\frac{\partial}{\partial t}\psi_m = E_m(\varepsilon D)\psi_m , \quad m = 1, 2, \dots \end{split}$$

Theorem

(linear case, no slow scale potential) The semiclassical measure w = w(x, k, t) of ψ is given by $w = \sum_{m=1}^{\infty} w_m$, where w_m satisfies the transport equation:

$$rac{\partial}{\partial_t}w_m +
abla_k E_m(k) \cdot
abla_x w_m = 0 , \quad w_m(t=0) = w_{m,l} \ge 0 .$$

 w_m is Γ^* -periodic in k.

Maxwell Equations in a Periodic Medium

$$\begin{array}{l} \sigma = \sigma \left(\underbrace{x}_{\varepsilon} \right) : \varepsilon \Gamma \text{-periodic permittivity} \\ \mu = \mu \left(\underbrace{x}_{\varepsilon} \right) : \varepsilon \Gamma \text{-periodic permeability} \end{array} \left| \begin{array}{l} \text{P.Markowich} \\ \text{F. Poupaud, '96} \\ \text{F. Poupaud, '96} \\ \left(\begin{array}{c} \sigma \left(\underbrace{x}_{\varepsilon} \right) E_t = \text{curl } H \\ \mu \left(\underbrace{x}_{\varepsilon} \right) H_t = - \text{curl } E \\ \text{,} \end{array} \right) \left(\begin{array}{c} \text{div} \left(\sigma \left(\underbrace{x}_{\varepsilon} \right) E \right) = 0 \\ \text{in } \mathbb{R}^3 \\ \text{,} \end{array} \right) = 0 \\ \text{in } \mathbb{R}^3 \\ \text{,} \end{array} \right) \left(\begin{array}{c} \varepsilon \to 0 \\ t > 0 \\ H \end{array} \right) \left(\begin{array}{c} \varepsilon \to 0 \\ \mu \left(\underbrace{x}_{\varepsilon} \right) H \right) = 0 \\ H \end{array} \right) \left(\begin{array}{c} \varepsilon \to 0 \\ \mu \left(\underbrace{x}_{\varepsilon} \right) H \right) = 0 \\ H \end{array} \right) \left(\begin{array}{c} \varepsilon \to 0 \\ \mu \end{array} \right) \right)$$
 solve "homogenised" Maxwell system

P. A. Markowich (DAMTP,U. of Cambridge Nonlinear Dis

3

Maxwell Equations in a Periodic Medium

$$\begin{array}{l} \sigma = \sigma \left(\frac{x}{\varepsilon} \right) : \varepsilon \Gamma \text{-periodic permittivity} \\ \mu = \mu \left(\frac{x}{\varepsilon} \right) : \varepsilon \Gamma \text{-periodic permeability} \end{array} \begin{vmatrix} \text{P.Markowich} \\ \text{F. Poupaud, '96} \\ \text{F. Poupaud, '96} \\ \left\{ \begin{array}{l} \sigma \left(\frac{x}{\varepsilon} \right) E_t = \text{curl } H \\ \mu \left(\frac{x}{\varepsilon} \right) H_t = - \text{curl } E \\ \text{, div} \left(\sigma \left(\frac{x}{\varepsilon} \right) E \right) = 0 \quad \text{in } \mathbb{R}^3 \\ \text{, } t > 0 \\ \text{, } t > 0 \\ \text{, } t > 0 \\ H \stackrel{\varepsilon \to 0}{\longrightarrow} E^0 \\ H \stackrel{\varepsilon \to 0}{\longrightarrow} H^0 \\ \end{array} \right\} \text{ solve "homogenised" Maxwell system}$$

energy density:
$$e^{\varepsilon} := \sigma\left(\frac{x}{\varepsilon}\right) |E|^2 + \mu\left(\frac{x}{\varepsilon}\right) |H|^2 \rightarrow e^0$$
??
Bloch eigen-
value problem
$$\begin{cases} \operatorname{curl}_y\left(\frac{1}{\mu(y)}\operatorname{curl}_y e\right) = \omega(k)^2 \sigma(y)e, & \operatorname{div}_y\left(\sigma(y)e\right) = 0\\ e(y+\gamma,k) = e^{i\gamma \cdot k}e(y,k) & \forall \gamma \in \Gamma, \quad k \in B, \quad y \in \mathbb{R}^3 \end{cases}$$

э

<ロ> <同> <同> < 同> < 同>

Slow-Fast Coupling

(P. Bechouche, N. Mauser, F. Poupaud '01; G. Panati, H. Spohn, S. Teufel '02)

$$\begin{cases} i\varepsilon\psi_t = -\frac{\varepsilon^2}{2}\Delta\psi + V_{\Gamma}\left(\frac{x}{\varepsilon}\right)\psi + V(x)\psi\\ \psi(t=0) = \psi_I \end{cases}$$

< 日 > < 同 > < 三 > < 三 >

3

Slow-Fast Coupling

(P. Bechouche, N. Mauser, F. Poupaud '01; G. Panati, H. Spohn, S. Teufel '02)

$$\begin{cases} i\varepsilon\psi_t = -\frac{\varepsilon^2}{2}\Delta\psi + V_{\Gamma}\left(\frac{x}{\varepsilon}\right)\psi + V(x)\psi \\ \psi(t=0) = \psi_I \end{cases}$$

Theorem

Let ψ_l concentrate in the m-th Bloch band space S_m^{ε} and assume that the m-th band $E_m = E_m(k)$ is isolated. Then the semiclassical measure of $\psi(t)$ satisfies

$$\begin{cases} w_t + \nabla_k E_m(k) \cdot \nabla_x w - \nabla_x V(x) \cdot \nabla_k w = 0 \\ w(t=0) = w_l \quad (= \text{ a semiclassical measure of } \psi_l). \end{cases}$$

If $w_I = \rho_I(x)\delta_{\Gamma^*}(k - \nabla S_I(x))$, then $w(t) = \rho(x, t)\delta_{\Gamma^*}(k - \nabla S(x, t))$ as long as S remains smooth, where

$$\begin{cases} S_t + E_m(\nabla S) + V(x) = 0\\ S(t=0) = S_I \end{cases}$$

P. A. Markowich (DAMTP,U. of Cambridge

Nonlinear Dispersive Equations

20 / 38

Comparison between $\overline{H}(\xi)$, for $V(x) \equiv 0$ and $V_{\Gamma}(y) = \cos(y)$ (Mathieu equation), and the Bloch-bands:

 \overline{H} : black solid line, Bloch bands: blue dotted lines

$$\overline{H}(\xi) = \begin{cases} \xi = \frac{1}{2\pi} \int_0^{2\pi} \sqrt{2(\overline{H}(\xi) - \cos(z))} \, dz, & |\xi| > \frac{\pi}{4} \\ 1 \quad (= \max(\cos(y))!), & |\xi| < \frac{\pi}{4} \end{cases}$$

L. Gosse, P. Markowich '03

21 / 38

Bose-Einstein Condensates in Optical Lattices

BEC: ultracold, dilute quantum gas below the critical temperature: Gross-Pitaevskii NLS

$$\psi(\underbrace{x_1, x_2, x_3}_{\mathbb{R}^3}, t)$$
: condensate wave function

Bose-Einstein Condensates in Optical Lattices

BEC: ultracold, dilute quantum gas below the critical temperature: Gross-Pitaevskii NLS

 $\psi(\underbrace{x_1, x_2, x_3}_{\mathbb{R}^3}, t)$: condensate wave function

$$i\varepsilon\psi_t = -\frac{\varepsilon^2}{2}\Delta\psi + \underbrace{V(x)\psi}_A + \underbrace{V_{\Gamma}\left(\frac{x}{\varepsilon}\right)\psi}_B + \underbrace{\kappa\varepsilon|\psi|^2\psi}_C$$

A: harmonic laser confinement: $V(x) = \omega_1 \frac{x_1^2}{2} + \omega_2 \frac{x_2^2}{2} + \omega_3 \frac{x_3^2}{2}$ B: periodic lattice

C: two-body interaction, weak nonlinearity

WKB-Asymptotics

Theorem (R. Carles, P. Markowich, C. Sparber '04) If $\psi(t = 0)$ is concentrated in the m-th Bloch band, then

$$\psi^{\varepsilon}(x,t) \sim \mathcal{A}(x,t)\chi_m\left(\frac{x}{\varepsilon}, \nabla_x S(x,t)\right) \exp\left(\frac{i}{\varepsilon}S(x,t)\right)$$

where

 $S_t + E_m(\nabla_x S) + V(x) = 0$ semiclassical HJ-equation in the m-th band

and (P. M., Guillot, E. Trubowitz, I. Ralston, '88; linear case $\kappa\equiv$ 0) $\downarrow\downarrow$

$$A_t + \nabla_k E_m(\nabla_x S) \cdot \nabla_x A + \frac{1}{2} \operatorname{div}(\nabla_k E_m(\nabla_x S)A) - \beta_m A = -i\kappa_m^* |A|^2 A$$

as long as S is smooth! Here:

$$eta_m \in i\mathbb{R}$$
 : Berry phase , $\kappa_m^* = \kappa \int_C |\chi_m(y,
abla_x S)|^4 dy$

Numerics of Lattice SE: Difficulties

$$i\varepsilon\psi_{t} = -\frac{\varepsilon^{2}}{2}\Delta\psi + V_{\Gamma}\left(\frac{x}{\varepsilon}\right)\psi \quad \left| \quad \text{Fouriertransform} \right.$$
$$i\varepsilon\tilde{\psi}_{t} = \frac{\varepsilon^{2}}{2}|\xi|^{2}\tilde{\psi}(\xi, t) + \sum_{\alpha\in\Gamma^{*}}\hat{V}(\omega)\tilde{\psi}\left(\xi - \frac{\alpha}{\varepsilon}, t\right)$$

$$\hat{V}(\gamma) = rac{1}{|\mathcal{C}|} \int_{\mathcal{C}} V(y) e^{-iy\cdot\gamma} \, dy$$

Fourier coefficients of the Γ -periodic potential V_{Γ} .

as $\varepsilon \to 0$ higher and higher Fourier modes influence the low modes. \Rightarrow numerical error accumulation!

≙

P. A. Markowich (DAMTP,U. of Cambridge

24 / 38

Bloch-Time splitting Discretisation

(Z. Huang, S. Jin, P. Markowich, C. Sparber '05)

$$i\varepsilon\psi_t = \left(-\varepsilon^2\Delta\psi + V_{\Gamma}\left(\frac{x}{\varepsilon}\right)\psi\right) + \left(V(x)\psi + \sigma|\psi|^2\psi\right)$$

3

< 日 > < 同 > < 三 > < 三 >

Bloch-Time splitting Discretisation

(Z. Huang, S. Jin, P. Markowich, C. Sparber '05)

$$i\varepsilon\psi_t = \left(-\varepsilon^2\Delta\psi + V_{\Gamma}\left(\frac{x}{\varepsilon}\right)\psi\right) + \left(V(x)\psi + \sigma|\psi|^2\psi\right)$$

preprocessing: compute the Bloch bands E_m(k) and the Bloch eigenvectors \(\chi_m(y, k)\), for m = 1...M. This is simple and cheap if d = 1, less trivial for d = 2 and difficult if d = 3. For BECs we have, however,

$$V_{\Gamma}(y) = V_{\Gamma_1}(y_1) + V_{\Gamma_2}(y_2) + V_{\Gamma_3}(y_3)$$

which allows to solve only 1-dim. spectral problems combined with a fractional step method.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

2) at time t = 0 decompose

$$\psi(t=0) pprox \sum_{m=1}^{M} \psi_{I,m} , \quad \psi_{I,m} \in S_m^{\varepsilon} .$$

This is done by adapting FFT \Rightarrow cheap!

э

2) at time t = 0 decompose

$$\psi(t=0) \approx \sum_{m=1}^{M} \psi_{I,m} , \quad \psi_{I,m} \in S_m^{\varepsilon} .$$

This is done by adapting FFT \Rightarrow cheap!

first splitting step

update
$$\psi$$
: $\hat{\psi}_0(\Delta t) \approx \sum_{m=1}^M \hat{\psi}_{I,m} \exp\left(\frac{i}{\varepsilon} E_m(\varepsilon k) t\right)$

- - E - N

< A >

< ∃ >

э

2) at time t = 0 decompose

$$\psi(t=0) \approx \sum_{m=1}^{M} \psi_{I,m} , \quad \psi_{I,m} \in S_m^{\varepsilon} .$$

This is done by adapting FFT \Rightarrow cheap!

first splitting step

update
$$\psi: ilde{\psi}_0(\Delta t) pprox \sum_{m=1}^M ilde{\psi}_{I,m} \exp\left(rac{i}{arepsilon} {\cal E}_m(arepsilon k) t
ight)$$

second splitting step

$$\begin{array}{l} i\varepsilon\psi_t = V(x)\psi + \sigma|\psi|^2\psi \\ \psi(t=0) = \psi_0(\Delta t) \end{array} \right\} \stackrel{(\text{explicit})}{\Rightarrow} \psi(\Delta t)$$

P. A. Markowich (DAMTP,U. of Cambridge

Nonlinear Dispersive Equations

э

Remarks on the Bloch-time splitting scheme

- a second order Strang-splitting scheme is straightforward
- 2 meshsize constraints: $\Delta x = O(\varepsilon)$, $\Delta t = O(1)$ in the linear case
- the computational cost is comparable to the usual spectral time-splitting method
- mass conservation in each Bloch band
- Interpretation Bloch-spectral information Bloch-spectral information

Band-mixing: mass transfer

$$i\varepsilon\psi_t = -\frac{\varepsilon^2}{2}\Delta\psi + V_{\Gamma}\left(\frac{x}{\varepsilon}\right)\psi + V(x)\psi + \kappa(\varepsilon)|\psi|^2\psi$$

linear case $\kappa \equiv 0$: isolated Bloch bands are adiabatically stable up to small errors; G. Panati, H. Spohn, S. Teufel '03

Theorem

Let $\psi_I = \psi(t = 0) = P_m \psi_I$ (concentrated in the m-th Band). Then, if $\kappa = 0$ and the m-th band is isolated: $F_m(t) = \|\psi(t) - P_m \psi(t)\|_{L^2} = \mathcal{O}(\varepsilon)$ on $\mathcal{O}(1)$ -time scales.

P. A. Markowich (DAMTP, U. of Cambridge

- ロ ト - (同 ト - (回 ト -) 回 -)

nonlinear case: set $\kappa(\varepsilon) = \varepsilon^{\alpha}$, ansatz: $F_m(t) = O(\varepsilon^{\gamma})$. How are α and γ related? Numerical study!

• no slow scale potential $V(x) \equiv 0$, $V_{\Gamma}(y) = \cos(y)$, m = 1 (the first Bloch band is isolated), $\varepsilon = \frac{1}{32}$

 $\alpha \approx \gamma$, the mass transfer rate is of the same order as the nonlinearity.

Slow scale potential V(x) = x, m = 1, $\varepsilon = \frac{1}{32}$

large nonlinearity $0 < \alpha < 1$: $\mathcal{O}(\varepsilon^{\alpha})$ -mass transfer rate small nonlinearity $\alpha > 1$: $\mathcal{O}(\varepsilon)$ -mass transfer rate

June 6, 2008

30 / 38

• Non-isolated band m = 4, for $V_{\Gamma}(y) = \cos(y)$, $V(x) = \frac{1}{2}(\alpha - \pi)^2$, $\varepsilon = \frac{1}{32}$

constant mass transfer rate independent of the nonlinearity.

June 6, 2008 3

31 / 38

Simulations of Lattice Bose-Einstein Condensates

$$V_{\Gamma}(y) = \sum_{i=1}^{3} \sin^{2}(y_{i}) , \quad V(x) \approx \frac{1}{2} |x|^{2} , \quad \kappa(\varepsilon) = \pm \begin{cases} \varepsilon \\ 1 \end{cases}$$

allows to solve only 1-dim. Bloch spectral problems!

Experimental setup: the BEC is formed under the action of the harmonic potential V(x), then the lattice potential $V_{\Gamma}\left(\frac{x}{\varepsilon}\right)$ is turned on. Initial datum: ground state (repulsive interaction)

$$\begin{cases} -\frac{\varepsilon^2}{2}\Delta\psi_g + V(x)\psi_g + |\kappa(\varepsilon)||\psi_g|^2\psi_g = \mu(\varepsilon)\psi_g \\ \|\psi\|_{L^2} = 1 , \quad \psi_g > 0 \quad \text{(unique!)} \end{cases}$$

or its Tomas-Fermi limit (drop the Laplacian...).

June 6, 2008 32 / 38

Weak Nonlinearity $\kappa = \pm \varepsilon$

Figure: $\rho(t = 0)|_{x_3=0}$ initial density harmonic oscillator ground state Figure: $\rho(t = 1)|_{x_3=1}$ defocusing $\kappa = \varepsilon$

Figure: $\rho(t = 1)|_{x_3=1}$ focusing $\kappa = -\varepsilon$

Strong Nonlinearity $\kappa = \pm 1$

Figure: $\rho(t = 0)|_{x_3=0}$ initial density Tomas-Fermi ground state Figure: $\rho(t = 1)|_{x_3=1}$ defocusing $\kappa = 1$

Figure: $\rho(t=1)|_{x_3=1}$ focusing $\kappa = -1$

Figure: $\rho(t = 2)|_{x_3=0}$ defocusing $\kappa = 1$

P. A. Markowich (DAMTP,U. of Cambridge

Nonlinear Dispersive Equations

Figure: $\rho(t=2)|_{x_3=1}$ focusing $\kappa = 1$ = $\circ \circ \circ \circ$ June 6, 2008 34 / 38

Wave propagation in Periodic Random Media

Klein-Gordon equation:

$$\frac{\partial^2 u}{\partial t^2} = \operatorname{div}\left(A_{\Gamma}\left(\frac{x}{\varepsilon};\omega\right)\nabla u\right) - \frac{1}{\varepsilon^2}W_{\Gamma}\left(\frac{x}{\varepsilon};\omega\right)u\;,\quad x\in\mathbb{R}^d\;,\quad t>0$$

$$\begin{array}{c} A_{\Gamma}(y;\omega) \\ W_{\Gamma}(y;\omega) \end{array} \end{array} \right\} \begin{array}{c} \Gamma \text{-periodic functions of } y, \text{ depending on} \\ \text{a mean-zero, uniformly distributed,} \\ \text{random variable } \omega \text{ with variance } \sigma \end{array}$$

random Bloch-spectral problem:

$$\left\{\begin{array}{l} -\operatorname{div}_{y}(A_{\Gamma}(y;\omega)\nabla U_{m})+W_{\Gamma}(y;\omega)U_{m}=E_{m}(k;\omega)^{2}U_{m}\\ U_{m}(y+\gamma,k;\omega)=e^{ik\cdot\gamma}U_{m}(y,k;\omega) \,\forall \gamma\in\Gamma, \quad y\in\mathbb{R}^{d}, \quad k\in B\end{array}\right\}$$

P. A. Markowich (DAMTP, U. of Cambridge

June 6, 2008 35 / 38

3

A) stability test

compute (numerically)

 $\mathbb{E}E_m(k;.)$, $\mathbb{E}U_m(y,k;.)$

▲ロ → ▲ 翻 → ▲ 画 → ▲ 画 → ● ● ●

A) stability test

compute (numerically)

$$\mathbb{E}E_m(k;.)$$
, $\mathbb{E}U_m(y,k;.)$

2 apply the Bloch-spectral algorithm with the averaged bands and eigenfunctions, for different values of the variance $\sigma \Rightarrow u = u^{\sigma}(x, t)$

3

compute (numerically)

$$\mathbb{E}E_m(k;.)$$
, $\mathbb{E}U_m(y,k;.)$

- 2 apply the Bloch-spectral algorithm with the averaged bands and eigenfunctions, for different values of the variance $\sigma \Rightarrow u = u^{\sigma}(x, t)$
- **3** apply the algorithm with ω set to $0 \Rightarrow u = u(x, t)$.

Extensive tests show: $\|u^{\sigma}(t) - u(t)\|_{L^2} \approx \sigma \|u(t)\|_{L^2}$.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Numerical Evidence for Anderson Localisation

When the medium gets "sufficiently" disordered (σ large enough), then waves experience a transition from a dispersive to a localized state (P.W. Anderson '58).

$$e(x,t;\omega) := \frac{1}{2} |u_t(x,t;\omega)|^2 + \nabla u(x,t;\omega)^T A_{\Gamma}(x,t;\omega) \nabla u(x,t;\omega) + \frac{1}{\varepsilon^2} W_{\Gamma}(x,t;\omega) |u(x,t;\omega)|^2 \dots \text{ energy density} E_2(t;\omega) := \int_{\mathbb{R}^d} |x|^2 e(x,t;\omega) dx$$

 $A(t) := \mathbb{E}E_2(t; .)$... measures the average spread of the wave (J. Fröhlich, T. Spencer '84)

