Maxwell-Dirac: Null structure and almost optimal local well-posedness

Sigmund Selberg
(joint work with P. D'Ancona and D. Foschi)

Department of Mathematical Sciences
Norwegian University of Science and Technology (NTNU)

HYP 2008
University of Maryland, June 9-13 2008

Outline

- Study Maxwell-Dirac system (MD).
- System of nonlinear wave equations. Describes: electron self-interacting with electromagnetic field.
- We would like to understand the nonlinear structure of MD.
- The structure cannot be seen in each component equation, only in system as whole.
- Structure is expressed in terms of trilinear and quadrilinear integral forms with special cancellation properties expressed in terms of the spatial frequencies.
- 3D case: Use structure to prove multilinear space-time Fourier restriction estimates at scale invariant regularity up to a logarithmic loss.
- As a consequence, we are able to prove local well-posedness almost down to the critical regularity in 3D.

Minkowski space-time $\mathbb{R}^{1+3}=\mathbb{R}_{t} \times \mathbb{R}_{x}^{3}$

- Coordinates/partials:

$$
\begin{array}{ccc}
t=x^{0} & \partial_{0}=\partial_{t} & \text { time } \\
x=\left(x^{1}, x^{2}, x^{3}\right) & \partial_{j}=\partial_{x^{j}} & \nabla=\left(\partial_{1}, \partial_{2}, \partial_{3}\right)
\end{array} \begin{gathered}
\text { space } \\
\text { - Metric (raise/lower indices): }\left(g^{\mu \nu}\right)=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

- Summation convention applies for repeated upper/lower indices $(j, k, \cdots=1,2,3 ; \mu, \nu, \cdots=0,1,2,3)$
- For example:

$$
\square=\partial^{\mu} \partial_{\mu}=-\partial_{0}^{2}+\partial_{1}^{2}+\partial_{2}^{2}+\partial_{3}^{2}=-\partial_{t}^{2}+\Delta_{x}
$$

Maxwell-Dirac (MD)

- Couple Maxwell's equations and Dirac equation:

$$
\begin{aligned}
& \begin{cases}\nabla \cdot \mathbf{E}=\rho, & \nabla \cdot \mathbf{B}=0 \\
\nabla \times \mathbf{E}+\partial_{t} \mathbf{B}=0, & \nabla \times \mathbf{B}-\partial_{t} \mathbf{E}=\mathbf{J}\end{cases} \\
& \left(\boldsymbol{\alpha}^{\mu} D_{\mu}+m \boldsymbol{\beta}\right) \psi=0
\end{aligned}
$$

$m \geq 0$ constant; $\boldsymbol{\alpha}^{\mu}$ and $\boldsymbol{\beta}$ are 4×4 Dirac matrices.

- Unknowns:

$$
\begin{array}{ll}
\mathbf{E}, \mathbf{B}: \mathbb{R}^{1+3} \rightarrow \mathbb{R}^{3} & \text { electric and magnetic fields } \\
\psi: \mathbb{R}^{1+3} \rightarrow \mathbb{C}^{4} & \text { Dirac four-spinor }
\end{array}
$$

- Represent EM field by real four-potential $A_{\mu}, \mu=0,1,2,3$:

$$
\mathbf{B}=\nabla \times \mathbf{A}, \quad \mathbf{E}=\nabla A_{0}-\partial_{t} \mathbf{A} \quad\left(\mathbf{A}=\left(A_{1}, A_{2}, A_{3}\right)\right)
$$

Maxwell-Dirac (MD)

- We have

$$
\begin{aligned}
& \begin{cases}\nabla \cdot \mathbf{E}=\rho, & \nabla \cdot \mathbf{B}=0 \\
\nabla \times \mathbf{E}+\partial_{t} \mathbf{B}=0, & \nabla \times \mathbf{B}-\partial_{t} \mathbf{E}=\mathbf{J},\end{cases} \\
& \left(\boldsymbol{\alpha}^{\mu} D_{\mu}+m \boldsymbol{\beta}\right) \psi=0, \\
& \mathbf{B}=\nabla \times \mathbf{A}, \quad \mathbf{E}=\nabla A_{0}-\partial_{t} \mathbf{A}
\end{aligned}
$$

- Complete the coupling:

$$
\begin{aligned}
& J^{\mu}=\left\langle\boldsymbol{\alpha}^{\mu} \psi, \psi\right\rangle_{\mathbb{C}^{4}} \\
& \rho=J^{0}=|\psi|^{2} \\
& \mathbf{J}=\left(J^{1}, J^{2}, J^{3}\right) \\
& D_{\mu}=D_{\mu}^{(A)}=\frac{1}{i} \partial_{\mu}-A_{\mu}
\end{aligned}
$$

Gauge invariance

- Result is the following nonlinear system:

$$
\begin{gathered}
\square A_{\mu}-\partial_{\mu}\left(\partial^{\nu} A_{\nu}\right)=-\left\langle\boldsymbol{\alpha}_{\mu} \psi, \psi\right\rangle_{\mathbb{C}^{4}} \\
\left(-i \boldsymbol{\alpha}^{\mu} \partial_{\mu}+m \boldsymbol{\beta}\right) \psi=A_{\mu} \boldsymbol{\alpha}^{\mu} \psi
\end{gathered}
$$

(Maxwell)
(Dirac)

- Invariant under the gauge transformation

$$
\begin{equation*}
\psi \longrightarrow \psi^{\prime}=e^{i \chi} \psi, \quad A_{\mu} \longrightarrow A_{\mu}^{\prime}=A_{\mu}+\partial_{\mu} \chi \tag{GT}
\end{equation*}
$$

for any $\chi: \mathbb{R}^{1+3} \rightarrow \mathbb{R}$ (the gauge function).

- Observables E, B, ρ, J not affected, so solutions related by GT are physically undistinguishable; considered equivalent.
- Pick representative whose potential A_{μ} simplifies the analysis.
- Natural: impose Lorenz gauge condition

$$
\begin{equation*}
\partial^{\mu} A_{\mu}=0 \quad\left(\Longleftrightarrow \partial_{t} A_{0}=\nabla \cdot \mathbf{A}\right) \tag{LG}
\end{equation*}
$$

Initial data

- System becomes

$$
\begin{align*}
& \square A_{\mu}=-\left\langle\boldsymbol{\alpha}_{\mu} \psi, \psi\right\rangle_{\mathbb{C}^{4}} \\
& \left(-i \boldsymbol{\alpha}^{\mu} \partial_{\mu}+m \boldsymbol{\beta}\right) \psi=A_{\mu} \boldsymbol{\alpha}^{\mu} \psi, \\
& \partial^{\mu} A_{\mu}=0 . \tag{LG}
\end{align*}
$$

- Initial data:

$$
\left.\psi\right|_{t=0}=\psi_{0},\left.\quad \mathbf{E}\right|_{t=0}=\mathbf{E}_{0},\left.\quad \mathbf{B}\right|_{t=0}=\mathbf{B}_{0}
$$

Maxwell imposes constraints

$$
\nabla \cdot \mathbf{E}_{0}=\left|\psi_{0}\right|^{2}, \quad \nabla \cdot \mathbf{B}_{0}=0
$$

- Scale invariant data regularity (3D):

$$
\psi_{0} \in L^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right), \quad\left(\mathbf{E}_{0}, \mathbf{B}_{0}\right) \in \dot{H}^{-1 / 2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)
$$

Construction of Lorenz data

- The data for the four-potential,

$$
\left.A_{\mu}\right|_{t=0}=a_{\mu},\left.\quad \partial_{t} A_{\mu}\right|_{t=0}=\dot{a}_{\mu}
$$

must be constructed from the observables ($\mathbf{E}_{0}, \mathbf{B}_{0}$).

- Set

$$
a_{0}=\dot{a}_{0}=0 .
$$

Then $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\dot{\mathbf{a}}=\left(\dot{a}_{1}, \dot{a}_{2}, \dot{a}_{3}\right)$ determined by

- LG condition automatically satisfied in the evolution starting from Lorenz data. LG equation can be discarded from the system.
- Next step: Solve wave equation for A_{μ} and plug into Dirac equation. Result is a single nonlinear Dirac equation.

Reduction to nonlinear Dirac equation

- Recall Duhamel's formula for $\square u=F,\left.\left(u, \partial_{t} u\right)\right|_{t=0}=\left(u_{0}, u_{1}\right)$:

$$
u(t)=\underbrace{\cos (t|\nabla|) u_{0}+\frac{\sin (t|\nabla|)}{|\nabla|} u_{1}}_{u^{\text {hom. }}}+\underbrace{\int_{0}^{t} \frac{\sin ((t-s)|\nabla|)}{|\nabla|} F(s) d s}_{\frac{1}{\square} F}
$$

- Thus, $A_{\mu}=A_{\mu}^{\text {hom. }}-\frac{1}{\square}\left\langle\boldsymbol{\alpha}_{\mu} \psi, \psi\right\rangle_{\mathbb{C}^{4}}$.
- Result: MD in LG becomes a single nonlinear Dirac equation

$$
\begin{equation*}
\left(-i \boldsymbol{\alpha}^{\mu} \partial_{\mu}+m \boldsymbol{\beta}\right) \psi=A_{\mu}^{\text {hom. }} \boldsymbol{\alpha}^{\mu} \psi-\mathcal{N}(\psi, \psi, \psi) \tag{MDL}
\end{equation*}
$$

where

$$
\mathcal{N}(\cdot, \cdot, \cdot)=\left(\frac{1}{\square}\left\langle\boldsymbol{\alpha}_{\mu} \cdot, \cdot\right\rangle_{\mathbb{C}^{4}}\right) \boldsymbol{\alpha}^{\mu}
$$

Local well-posedness (almost optimal)

Theorem

Let $s>0$. Assume given initial data

$$
\psi_{0} \in H^{5}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right), \quad \mathbf{E}_{0}, \mathbf{B}_{0} \in H^{s-1 / 2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)
$$

satisfying the Maxwell constraints. Prepare Lorenz data:

$$
a_{0}=\dot{a}_{0}=0, \quad \nabla \cdot \mathbf{a}=0, \quad \nabla \times \mathbf{a}=\mathbf{B}_{0}, \quad \dot{\mathbf{a}}=-\mathbf{E}_{0},
$$

 the data norm, and there exists

$$
\psi \in C\left([-T, T] ; H^{5}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)\right)
$$

which solves the MDL equation on $(-T, T) \times \mathbb{R}^{3}$:

$$
\left(-i \boldsymbol{\alpha}^{\mu} \partial_{\mu}+m \boldsymbol{\beta}\right) \psi=A_{\mu}^{\text {hom. }} \boldsymbol{\alpha}^{\mu} \psi-\mathcal{N}(\psi, \psi, \psi),\left.\quad \psi\right|_{t=0}=\psi_{0}
$$

Persistence of regularity for electromagnetic field

Theorem

Assume same hypotheses as in previous theorem, and let ψ be the solution of $M D L$ on $(-T, T) \times \mathbb{R}^{3}$. Define

$$
\rho=|\psi|^{2} \quad \mathbf{J}=\left\{\left\langle\boldsymbol{\alpha}^{j} \psi, \psi\right\rangle_{\mathbb{C}^{4}}\right\}_{j=1,2,3},
$$

and solve Maxwell's equations

$$
\begin{cases}\nabla \cdot \mathbf{E}=\rho, & \nabla \cdot \mathbf{B}=0 \\ \nabla \times \mathbf{E}+\partial_{t} \mathbf{B}=0, & \nabla \times \mathbf{B}-\partial_{t} \mathbf{E}=\mathbf{J}\end{cases}
$$

Solution retains data regularity:

$$
(\mathbf{E}, \mathbf{B}) \in C\left([-T, T] ; H^{s-1 / 2}\right)
$$

Some earlier existence results for MD

- Gross '66: Local existence for smooth data
- Georgiev '91: Global existence for small, smooth data
- Bournaveas '96: Local well-posedness (LWP) for data

$$
\psi_{0} \in H^{s}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right), \quad \mathbf{E}_{0}, \mathbf{B}_{0} \in H^{s-1 / 2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right), \quad s>\frac{1}{2}
$$

- Masmoudi and Nakanishi '03: LWP $s=\frac{1}{2}$ (Coulomb gauge)
- Latter result analogous to Klainerman and Machedon's result for Maxwell-Klein-Gordon (MKG) from 1993 (finite energy well-posedness). But for MD, energy is not positive definite.
- MKG: almost optimal LWP proved by Machedon and Sterbenz '03 (Coulomb gauge)

Nonlinear structure of MD in Lorenz gauge

- Isolate most difficult part: Consider model

$$
-i \boldsymbol{\alpha}^{\mu} \partial_{\mu} \psi=-\mathcal{N}(\psi, \psi, \psi), \quad \mathcal{N}(\cdot, \cdot, \cdot)=\left(\frac{1}{\square}\left\langle\boldsymbol{\alpha}_{\mu} \cdot, \cdot\right\rangle_{\mathbb{C}^{4}}\right) \boldsymbol{\alpha}^{\mu}
$$

- Diagonalize Dirac operator:

$$
-i \boldsymbol{\alpha}^{\mu} \partial_{\mu}=-i \partial_{t}+\underbrace{-i \boldsymbol{\alpha}^{j} \partial_{j}}_{=|\nabla| \boldsymbol{\Pi}_{+}-|\nabla| \mathbf{\Pi}_{-}}
$$

where the Dirac projections $\boldsymbol{\Pi}_{ \pm}$are multipliers

$$
\widehat{\boldsymbol{\Pi}_{ \pm}} f(\xi)=\boldsymbol{\Pi}(\pm \xi) \widehat{f}(\xi), \quad \boldsymbol{\Pi}(\xi)=\frac{1}{2}\left(\mathbf{I}_{4 \times 4}+\frac{\xi^{j} \boldsymbol{\alpha}_{j}}{|\xi|}\right) \quad\left(\xi \in \mathbb{R}^{3}\right)
$$

- Split $\psi=\psi_{+}+\psi_{-}$where $\psi_{ \pm}=\boldsymbol{\Pi}_{ \pm} \psi$.

Nonlinear structure of MD in Lorenz gauge

- Result is system

$$
\begin{array}{ll}
\left(-i \partial_{t}+|\nabla|\right) \psi_{+}=-\boldsymbol{\Pi}_{+} \mathcal{N}(\psi, \psi, \psi), & \left.\psi_{+}\right|_{t=0}=\boldsymbol{\Pi}_{+} \psi_{0} \\
\left(-i \partial_{t}-|\nabla|\right) \psi_{-}=-\boldsymbol{\Pi}_{-} \mathcal{N}(\psi, \psi, \psi), & \left.\psi_{-}\right|_{t=0}=\boldsymbol{\Pi}_{-} \psi_{0}
\end{array}
$$

where $\psi=\psi_{+}+\psi_{-}$and $\mathcal{N}(\cdot, \cdot, \cdot)=\left(\frac{1}{\square}\left\langle\boldsymbol{\alpha}_{\mu} \cdot, \cdot\right\rangle_{\mathbb{C}^{4}}\right) \boldsymbol{\alpha}^{\mu}$.

- Note that $\psi_{ \pm}=\boldsymbol{\Pi}_{ \pm} \psi$, since $\boldsymbol{\Pi}_{+} \boldsymbol{\Pi}_{-}=0$.
- Iterate in space $X_{ \pm}^{s, b}$ with norm

$$
\|u\|_{X_{ \pm}^{s, b}}=\left\|\langle\xi\rangle^{s}\langle\tau \pm| \xi| \rangle^{b} \widehat{u}(\tau, \xi)\right\|_{L_{\tau, \xi}^{2}},
$$

where $\widehat{u}(\tau, \xi)=$ F.t. of $u(t, x)$, and $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{1 / 2}$.

- For all $\varepsilon>0$,

$$
X_{ \pm}^{s, \frac{1}{2}+\varepsilon} \hookrightarrow B C\left(\mathbb{R} ; H^{s}\right)
$$

Linear estimate in $X_{ \pm}^{s, b}$

- Solution of linear IVP

$$
\begin{aligned}
& \left(-i \partial_{t} \pm|\nabla|\right) u=F \quad \text { on } S_{T}=(-T, T) \times \mathbb{R}^{3}, \\
& \left.u\right|_{t=0}=u_{0},
\end{aligned}
$$

satisfies

$$
\|u\|_{X_{ \pm}^{s, \frac{1}{2}+\varepsilon}\left(S_{T}\right)} \leq C_{\varepsilon}\left\|u_{0}\right\|_{H^{s}}+C_{\varepsilon} T^{\varepsilon}\|F\|_{X_{ \pm}^{s,-\frac{1}{2}+2 \varepsilon}\left(S_{T}\right)}
$$

- Apply to

$$
\begin{aligned}
\left(-i \partial_{t} \pm_{4}|\nabla|\right) \psi_{ \pm_{4}} & =-\Pi_{ \pm_{4}} \mathcal{N}(\psi, \psi, \psi) \\
& =-\sum_{ \pm_{1}, \pm_{2}, \pm_{3}} \Pi_{ \pm_{4}} \mathcal{N}\left(\psi_{ \pm_{1}}, \psi_{ \pm_{2}}, \psi_{ \pm_{3}}\right) \\
& =-\sum_{ \pm_{1}, \pm_{2}, \pm_{3}} \Pi_{ \pm_{4}} \mathcal{N}\left(\Pi_{ \pm_{1}} \psi, \Pi_{ \pm_{2}} \psi, \Pi_{ \pm_{3}} \psi\right)
\end{aligned}
$$

Nonlinear estimate in $X_{ \pm}^{s, b}$

- To close the iteration, thus need following nonlinear estimate:

$$
\|\underbrace{\rho(t)}_{\text {cut-off }} \Pi_{ \pm_{4}} \mathcal{N}\left(\boldsymbol{\Pi}_{ \pm_{1}} \psi_{1}, \Pi_{ \pm_{2}} \psi_{2}, \Pi_{ \pm_{3}} \psi_{3}\right)\|_{X_{ \pm}^{s,-\frac{1}{2}+2 \varepsilon}} \leq C \prod_{j=1,2,3}\left\|\psi_{j}\right\|_{X_{ \pm_{j}}^{s, \frac{1}{2}+\varepsilon}}
$$

- In dual form:

$$
\left|I\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right)\right| \leq C\left\|\psi_{1}\right\|_{X_{ \pm_{1}}^{s, \frac{1}{2}+\varepsilon}}\left\|\psi_{2}\right\|_{X_{ \pm_{2}}^{s, \frac{1}{2}+\varepsilon}}\left\|\psi_{3}\right\|_{X_{ \pm_{3}^{s}}^{s, \frac{1}{2}+\varepsilon}}\left\|\psi_{4}\right\|_{X_{ \pm_{4}}^{-s, \frac{1}{2}-2 \varepsilon}}
$$

where

$$
\begin{aligned}
& I\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right) \\
& \quad=\iint \rho\left\langle\mathcal{N}\left(\boldsymbol{\Pi}_{ \pm_{1}} \psi_{1}, \boldsymbol{\Pi}_{ \pm_{2}} \psi_{2}, \boldsymbol{\Pi}_{ \pm_{3}} \psi_{3}\right), \boldsymbol{\Pi}_{ \pm_{4}} \psi_{4}\right\rangle_{\mathbb{C}^{4}} \mathrm{~d} t \mathrm{~d} x \\
& \quad=\iint \rho \frac{1}{\square}\left\langle\boldsymbol{\alpha}_{\mu} \boldsymbol{\Pi}_{ \pm_{1}} \psi_{1}, \boldsymbol{\Pi}_{ \pm_{2}} \psi_{2}\right\rangle_{\mathbb{C}^{4}} \cdot\left\langle\boldsymbol{\alpha}^{\mu} \boldsymbol{\Pi}_{ \pm_{3}} \psi_{3}, \boldsymbol{\Pi}_{ \pm_{4}} \psi_{4}\right\rangle_{\mathbb{C}^{4}} \mathrm{~d} t \mathrm{~d} x
\end{aligned}
$$

Pass to Fourier space by Plancherel

- Frequencies $X_{j}=\left(\tau_{j}, \xi_{j}\right) \in \mathbb{R}^{1+3}, j=0,1,2,3,4$:

$$
\begin{array}{cccccc}
\psi_{1} & \psi_{2} & \left\langle\psi_{1}, \psi_{2}\right\rangle & \psi_{3} & \psi_{4} & \left\langle\psi_{3}, \psi_{4}\right\rangle \\
X_{1} & X_{2} & X_{0}=X_{1}-X_{2} & X_{3} & X_{4} & -X_{0}=X_{3}-X_{4}
\end{array}
$$

- L^{2}-normalization of spinor-valued $\psi \in X_{ \pm}^{s, b}$:

$$
\begin{array}{ll}
|\widehat{\psi}(X)|=\frac{F(X)}{\langle\xi\rangle^{s}\langle\tau \pm| \xi| \rangle^{b}}, & F \in L^{2}\left(\mathbb{R}^{1+3)}, F \geq 0,\right. \\
\widehat{\psi}=z|\widehat{\psi}|, & z: \mathbb{R}^{1+3} \rightarrow \mathbb{C}^{4} \text { meas., }|z|=1
\end{array}
$$

Apply for index $j=1,2,3,4$.

- For simplicity replace ρ_{\square}^{1} by multiplier with Fourier symbol

$$
\frac{1}{\left\langle\xi_{0}\right\rangle\left\langle\tau_{0} \pm_{0}\right| \xi_{0}| \rangle} \quad\left(\pm_{0} \text { arbitrary }\right)
$$

Dyadic decomposition

- Assign dyadic sizes to Fourier-weights:

$$
\begin{array}{ll}
\left\langle\xi_{j}\right\rangle \sim N_{j}, & \text { size of spatial frequency } \\
\left\langle\tau_{j} \pm_{j}\right| \xi_{j}| \rangle \sim L_{j}, & \text { distance from null cones }(\pm)
\end{array} \quad(j=0, \ldots, 4)
$$

where the N 's and L's are dyadic numbers ≥ 1.

- Write

$$
\begin{aligned}
\mathbf{N} & =\left(N_{0}, \ldots, N_{4}\right), \\
\mathbf{L} & =\left(L_{0}, \ldots, L_{4}\right), \\
\boldsymbol{\Sigma} & =\left(\pm_{0}, \ldots, \pm_{4}\right) \\
\mathbf{X} & =\left(X_{0}, \ldots, X_{4}\right), \\
\chi_{\mathbf{N}, \mathbf{L}}(\mathbf{X}) & \left.=\prod_{j=0}^{4} \chi_{\left\langle\xi_{j}\right\rangle \sim N_{j}} \chi_{\left\langle\tau_{j} \pm_{j}\right.}\left|\xi_{j}\right|\right\rangle \sim L_{j}
\end{aligned}
$$

Dyadic decomposition

Thus:

$$
\left|I\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right)\right| \lesssim \sum_{\mathrm{N}, \mathrm{~L}} \frac{N_{4}^{s} J_{\mathrm{N}, \mathrm{~L}}^{\Sigma}\left(F_{1}, F_{2}, F_{3}, F_{4}\right)}{\underbrace{N_{0} L_{0}}_{\text {from } \rho(t) \frac{1}{\square}}\left(N_{1} N_{2} N_{3}\right)^{s}\left(L_{1} L_{2} L_{3}\right)^{1 / 2+\varepsilon} L_{4}^{1 / 2-2 \varepsilon}}
$$

where

$$
J_{\mathrm{N}, \mathrm{~L}}^{\Sigma}\left(F_{1}, \ldots, F_{4}\right)=\int\left|q^{\Sigma}(\mathbf{X})\right| \chi_{\mathrm{N}, \mathrm{~L}}(\mathbf{X}) F_{1}\left(X_{1}\right) F_{2}\left(X_{2}\right) F_{3}\left(X_{3}\right) F_{4}\left(X_{4}\right) \mathrm{d} \mu(\mathbf{X})
$$

and

$$
\begin{aligned}
q^{\Sigma}(\mathbf{X}) & =\left\langle\boldsymbol{\alpha}^{\mu} \boldsymbol{\Pi}\left(e_{1}\right) z_{1}\left(X_{1}\right), \boldsymbol{\Pi}\left(e_{2}\right) z_{2}\left(X_{2}\right)\right\rangle\left\langle\boldsymbol{\alpha}_{\mu} \boldsymbol{\Pi}\left(e_{3}\right) z_{3}\left(X_{3}\right), \boldsymbol{\Pi}\left(e_{4}\right) z_{4}\left(X_{4}\right)\right\rangle \\
e_{j} & = \pm_{j} \frac{\xi_{j}}{\left|\xi_{j}\right|} \in \mathbb{S}^{2} \\
\mathrm{~d} \mu(\mathbf{X}) & =\delta\left(X_{0}-X_{1}+X_{2}\right) \delta\left(X_{0}+X_{3}-X_{4}\right) \mathrm{d} X_{0} \mathrm{~d} X_{1} \mathrm{~d} X_{2} \mathrm{~d} X_{3} \mathrm{~d} X_{4}
\end{aligned}
$$

Main dyadic estimate

Theorem

Following holds:

$$
J_{\mathrm{N}, \mathrm{~L}}^{\Sigma} \lesssim N_{0} L_{0}\left(L_{1} L_{2} L_{3} L_{4}\right)^{1 / 2} \log \left\langle L_{0}\right\rangle \prod_{j=1}^{4}\left\|F_{j}^{ \pm_{j}, N_{j}, L_{j}}\right\|
$$

where

$$
\begin{aligned}
F_{j}^{ \pm j, N_{j}, L_{j}}\left(X_{j}\right) & \left.=\chi_{\left\langle\xi_{j}\right\rangle \sim N_{j}} \chi_{\left\langle\tau_{j} \pm j\right.}\left|\xi_{j}\right|\right\rangle \sim L_{j} \\
\|\cdot\| & =\text { norm on } L^{2}\left(\mathbb{R}^{1+3}\right)
\end{aligned}
$$

Quadrilinear null structure

- Structure encoded in symbol

$$
q(\mathbf{e} ; \mathbf{z})=\sum_{\mu=0}^{3}\left\langle\boldsymbol{\alpha}^{\mu} \boldsymbol{\Pi}\left(e_{1}\right) z_{1}, \boldsymbol{\Pi}\left(e_{2}\right) z_{2}\right\rangle\left\langle\boldsymbol{\alpha}_{\mu} \boldsymbol{\Pi}\left(e_{3}\right) z_{3}, \boldsymbol{\Pi}\left(e_{4}\right) z_{4}\right\rangle,
$$

where

$$
\begin{array}{ll}
e_{j} \in \mathbb{S}^{2} & \text { represents signed direction of spatial freq. } \xi_{j} \\
z_{j} \in \mathbb{C}^{4}, \quad\left|z_{j}\right|=1 & \text { represents the direction of the spinor } \widehat{\psi}_{j}
\end{array}
$$

- Denote angles between $e_{1}, e_{2}, e_{3}, e_{4}$ on unit sphere by

$$
\theta_{j k}=\theta\left(e_{j}, e_{k}\right)
$$

- Six distinct angles:

$$
\begin{array}{ll}
\theta_{12}, \theta_{34} & \text { "internal" angles } \\
\theta_{13}, \theta_{14}, \theta_{23}, \theta_{24} & \text { "external" angles }
\end{array}
$$

Quadrilinear null structure

Set

$$
\phi=\min . \text { of external angles }=\min \left\{\theta_{13}, \theta_{14}, \theta_{23}, \theta_{24}\right\} .
$$

Lemma

The symbol

$$
q(\mathbf{e} ; \mathbf{z})=\sum_{\mu=0}^{3}\left\langle\boldsymbol{\alpha}^{\mu} \boldsymbol{\Pi}\left(e_{1}\right) z_{1}, \boldsymbol{\Pi}\left(e_{2}\right) z_{2}\right\rangle\left\langle\boldsymbol{\alpha}_{\mu} \boldsymbol{\Pi}\left(e_{3}\right) z_{3}, \boldsymbol{\Pi}\left(e_{4}\right) z_{4}\right\rangle
$$

satisfies

$$
|q(\mathbf{e} ; \mathbf{z})| \lesssim \theta_{12} \theta_{34}+\phi \max \left(\theta_{12}, \theta_{34}\right)+\phi^{2}
$$

for all unit vectors $e_{1}, \ldots, e_{4} \in \mathbb{R}^{3}$ and $z_{1}, \ldots, z_{4} \in \mathbb{C}^{4}$.

Quadrilinear null structure

Set

$$
\phi=\min . \text { of external angles }=\min \left\{\theta_{13}, \theta_{14}, \theta_{23}, \theta_{24}\right\} .
$$

Lemma

The symbol

$$
q(\mathbf{e} ; \mathbf{z})=\sum_{\mu=0}^{3}\left\langle\boldsymbol{\alpha}^{\mu} \boldsymbol{\Pi}\left(e_{1}\right) z_{1}, \boldsymbol{\Pi}\left(e_{2}\right) z_{2}\right\rangle\left\langle\boldsymbol{\alpha}_{\mu} \boldsymbol{\Pi}\left(e_{3}\right) z_{3}, \boldsymbol{\Pi}\left(e_{4}\right) z_{4}\right\rangle
$$

satisfies

$$
\begin{aligned}
|q(\mathbf{e} ; \mathbf{z})| & \lesssim \theta_{12} \theta_{34}+\phi \max \left(\theta_{12}, \theta_{34}\right)+\phi^{2} \\
& \lesssim \theta_{12} \theta_{34}+\theta_{13} \theta_{24}
\end{aligned}
$$

for all unit vectors $e_{1}, \ldots, e_{4} \in \mathbb{R}^{3}$ and $z_{1}, \ldots, z_{4} \in \mathbb{C}^{4}$.

Quadrilinear space-time estimate

Some key points in the proof of the main dyadic estimate

$$
J_{\mathrm{N}, \mathrm{~L}}^{\Sigma} \lesssim N_{0} L_{0}\left(L_{1} L_{2} L_{3} L_{4}\right)^{1 / 2} \log \left\langle L_{0}\right\rangle \prod_{j=1}^{4}\left\|F_{j}^{ \pm j, N_{j}, L_{j}}\right\|
$$

- Apply null estimate for symbol $q(\mathbf{e} ; \mathbf{z})$.
- To exploit null estimate, make additional angular decompositions of spatial frequencies ξ_{1}, \ldots, ξ_{4}, based on dyadic sizes of $\theta_{j k}$.
- Eventually apply Cauchy-Schwarz inequality in various ways to reduce to bilinear L^{2} space-time estimates (bilinear Fourier restriction estimates for the cone).
- Klainerman and Machedon first investigated L^{2} bilinear generalizations of the L^{4} estimate of Strichartz for the 3D wave equation. Also Klainerman and Foschi.
- The "standard" estimates not enough for our purposes; apply a number of modifications (Anisotropic bilinear L2 estimates related to the 3D wave equation, S. '08).

Review of some Fourier restriction results

- Stein-Tomas theorem for the unit sphere $\mathbb{S}^{2} \subset \mathbb{R}^{3}$
- Strichartz' L^{4} estimate for the 3D wave equation (cone restriction)
- Klainerman-Machedon type estimates (L^{2} bilinear generalizations of Strichartz' estimate)
- Use following notation: If

$$
A \subset \mathbb{R}^{n}
$$

define multiplier \mathbf{P}_{A} by

$$
\widehat{\mathbf{P}_{A} u}=\chi_{A} \widehat{u} .
$$

Here $n=3$ or $n=1+3$, depending on context.

Fourier restriction results: Stein-Tomas

- Fourier restriction from \mathbb{R}^{3} to \mathbb{S}^{2} :

$$
\left.f \longmapsto \widehat{f}\right|_{\mathbb{S}^{2}}
$$

is bounded map

$$
L^{p}\left(\mathbb{R}^{3}\right) \longrightarrow L^{2}\left(\mathbb{S}^{2}, d \sigma\right) \quad \text { iff } 1 \leq p \leq \frac{4}{3}
$$

- Endpoint $p=\frac{4}{3}$ equivalent to, by duality and approximation of \mathbb{S}^{2} by thickened spheres,

$$
\left\|\mathbf{P}_{S(\varepsilon)} f\right\|_{L^{4}\left(\mathbb{R}^{3}\right)} \leq C \sqrt{\varepsilon}\|f\|_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

where

$$
S(\varepsilon)=\varepsilon \text {-thickening of unit sphere } \mathbb{S}^{2} .
$$

Proof of $\left\|\mathbf{P}_{S(\varepsilon)} f\right\|_{L^{4}\left(\mathbb{R}^{3}\right)} \leq C \quad\|f\|_{L^{2}\left(\mathbb{R}^{3}\right)}$

- Naive attempt: Sobolev type estimate

$$
\begin{aligned}
\left\|\mathbf{P}_{S(\varepsilon)} f\right\|_{L^{4}\left(\mathbb{R}^{3}\right)} & \lesssim\left\|\chi_{S(\varepsilon)} \widehat{f}\right\|_{L^{\frac{4}{3}}\left(\mathbb{R}^{3}\right)} & & \text { Hausdorff-Young } \\
& \lesssim|S(\varepsilon)|^{\frac{1}{4}}\|\widehat{f}\|_{L^{2}\left(\mathbb{R}^{3}\right)} & & \text { Hölder } \\
& \simeq \varepsilon^{\frac{1}{4}}\|f\|_{L^{2}\left(\mathbb{R}^{3}\right)} & & \text { Plancherel }
\end{aligned}
$$

- Correct approach: Bilinear
- First step: Equivalent reformulation

$$
\left\|\mathbf{P}_{S(\varepsilon)} f \cdot \mathbf{P}_{S(\varepsilon)} g\right\| \leq C \varepsilon\|f\|\|g\|
$$

where $\|\cdot\|=$ norm on L^{2}.

Proof of $\left\|\mathbf{P}_{S(\varepsilon)} f \cdot \mathbf{P}_{S(\varepsilon)} g\right\| \leq C\|f\|\|g\|$

Apply general fact:

Lemma

Let $A, B \subset \mathbb{R}^{n}$ be measurable. Then

$$
\left\|\mathbf{P}_{A} f \cdot \mathbf{P}_{B} g\right\| \leq C_{A, B, n}\|f\|\|g\| \quad\left(\forall f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)\right)
$$

where

$$
C_{A, B, n} \sim \sup _{\xi \in A+B}|A \cap(\xi-B)|^{\frac{1}{2}}
$$

Proof of $\left\|\mathbf{P}_{S(\varepsilon)} f \cdot \mathbf{P}_{S(\varepsilon)} g\right\| \leq C\|f\|\|g\|$

- Thus, reduce Stein-Tomas to volume estimate

$$
\begin{equation*}
|S(\varepsilon) \cap(\xi+S(\varepsilon))| \lesssim \varepsilon^{2} . \tag{*}
\end{equation*}
$$

- Fails in concentric case $\xi \rightarrow 0$, but since we started with a linear estimate, may use partition of unity and replace $S(\varepsilon)$ by, say,

$$
S(\varepsilon) \cap\{\text { first octant }\} .
$$

Then only need $(*)$ for $|\xi| \sim 1$, so OK.

- In general: Let $S_{r}(\delta)=\delta$-thickening of sphere of radius r in \mathbb{R}^{3}.

Lemma

$$
\left|S_{r}(\delta) \cap\left(\xi+S_{R}(\Delta)\right)\right| \lesssim \frac{\operatorname{Rr} \delta \Delta}{|\xi|} \quad\left(\forall \xi \in \mathbb{R}^{3}\right)
$$

Fourier restriction results: Strichartz

- Analogous to Stein-Tomas, but for null cone in $1+3$ dimensions, i.e., characteristic cone of 3D wave equation:

$$
K=K^{+} \cup K^{-}, \quad K^{ \pm}=\left\{(\tau, \xi) \in \mathbb{R}^{1+3}: \tau= \pm|\xi|\right\}
$$

Note: Slices $\tau=$ const are 2 -spheres.

- Define truncated, thickened cones:

$$
K_{N, L}^{ \pm}=\left\{(\tau, \xi) \in \mathbb{R}^{1+3}:|\xi| \sim N, \tau= \pm|\xi|+O(L)\right\}
$$

- Equivalent formulation of Strichartz' estimate:

$$
\left\|\mathbf{P}_{K_{N, L}^{ \pm}} u\right\|_{L^{4}\left(\mathbb{R}^{1+3}\right)} \leq C \sqrt{N L}\|u\|_{L^{2}\left(\mathbb{R}^{1+3}\right)}
$$

- Compare Sobolev type estimate:

$$
\left\|\mathbf{P}_{K_{N, L}^{ \pm}} u\right\|_{L^{4}\left(\mathbb{R}^{1+3}\right)} \leq C\left(N^{3} L\right)^{\frac{1}{4}}\|u\|_{L^{2}\left(\mathbb{R}^{1+3}\right)}
$$

Fourier restriction results: Klainerman-Machedon

- First note obvious bilinear L^{2} formulation of Strichartz' estimate:

$$
\left\|\mathbf{P}_{K_{N_{1}, L_{1}}^{ \pm 1}} u_{1} \cdot \mathbf{P}_{K_{N_{2}, L_{2}}^{ \pm 2}} u_{2}\right\| \leq C \sqrt{N_{1} N_{2} L_{1} L_{2}}\left\|u_{1}\right\|\left\|u_{2}\right\| .
$$

Here $\|\cdot\|$ is norm on $L^{2}\left(\mathbb{R}^{1+3}\right)$.

- But bilinear is better: Can replace $N_{1} N_{2}$ by square of

$$
N_{\min }^{12}=\min \left(N_{1}, N_{2}\right) .
$$

- More generally: restrict spatial output frequency ξ_{0} to a ball

$$
B_{N_{0}}=\left\{\xi_{0} \in \mathbb{R}^{3}:\left|\xi_{0}\right| \leq N_{0}\right\}
$$

Then

$$
\left\|\mathbf{P}_{B_{N_{0}}}\left(\mathbf{P}_{K_{N_{1}, L_{1}}^{ \pm 1}} u_{1} \cdot \mathbf{P}_{K_{N_{2}, L_{2}}^{ \pm 2}} u_{2}\right)\right\| \leq C \sqrt{N_{\min }^{012} N_{\min }^{12} L_{1} L_{2}}\left\|u_{1}\right\|\left\|u_{2}\right\|
$$

Klainerman-Machedon estimates

- Symmetrized form

$$
\begin{aligned}
&\left\|\mathbf{P}_{K_{N_{0}, L_{0}}^{ \pm 0}}\left(\mathbf{P}_{K_{N_{1}, L_{1}}^{ \pm 1}} u_{1} \cdot \mathbf{P}_{K_{N_{2}, L_{2}}^{ \pm 2}} u_{2}\right)\right\| \\
& \leq \\
& \leq \sqrt{N_{\min }^{012} N_{\max }^{012} L_{\min }^{012} L_{\operatorname{med}}^{012}}\left\|u_{1}\right\|\left\|u_{2}\right\|
\end{aligned}
$$

- Remark: Spatial frequencies satisfy

$$
\begin{gathered}
\xi_{0}=\xi_{1}+\xi_{2} \\
u_{1} u_{2} \\
u_{1}
\end{gathered}
$$

Implies that two largest frequencies always comparable in size.

- In particular,

$$
N_{\min }^{012} N_{\max }^{012} \sim N_{0} N_{\min }^{12}
$$

Bilinear null forms

- Standard product of $f=f(x), g=g(x)\left(x \in \mathbb{R}^{3}\right)$ has F.t.

$$
\widehat{f g}\left(\xi_{0}\right) \simeq \iint \widehat{f}\left(\xi_{1}\right) \widehat{g}\left(\xi_{2}\right) \delta\left(\xi_{0}-\xi_{1}-\xi_{2}\right) \mathrm{d} \xi_{1} \mathrm{~d} \xi_{2}
$$

- Given signs \pm_{1}, \pm_{2}, define bilinear null form

$$
\mathfrak{B}_{\theta}^{ \pm_{1}, \pm_{2}}(f, g)
$$

by inserting angle

$$
\theta\left(\pm_{1} \xi_{1}, \pm_{2} \xi_{2}\right)
$$

in above convolution formula:

$$
\begin{aligned}
& \mathfrak{B}_{\theta}^{ \pm_{1}, \pm_{2}}(f, g)\left(\xi_{0}\right) \\
& \quad \simeq \iint \theta\left(\pm_{1} \xi_{1}, \pm_{2} \xi_{2}\right) \widehat{f}\left(\xi_{1}\right) \widehat{g}\left(\xi_{2}\right) \delta\left(\xi_{0}-\xi_{1}-\xi_{2}\right) \mathrm{d} \xi_{1} \mathrm{~d} \xi_{2}
\end{aligned}
$$

Bilinear null forms

- Replacing standard product by a null form improves the bilinear space-time estimates of Klainerman-Machedon type.
- Why? Consider space-time bilinear interaction

$$
\underset{\substack{X_{0} \\ K_{N_{0}, L_{0}}^{ \pm 0} \\ u_{1} u_{2}}}{K_{N_{1}, L_{1}}^{ \pm}} \quad u_{1} \quad K_{N_{N_{2}, L_{2}}^{ \pm}}^{U_{2}^{ \pm}}
$$

I.e., frequencies $X_{j}=\left(\tau_{j}, \xi_{j}\right) \in \mathbb{R}^{1+3}$ restricted by

$$
\begin{array}{ll}
\left|\xi_{j}\right| \sim N_{j} & \text { N's "elliptic" weights } \\
\tau_{j}= \pm_{j}\left|\xi_{j}\right|+O\left(L_{j}\right) & \text { L's "hyperbolic" weights }
\end{array}
$$

- Null interaction: All hyperbolic weights vanish, i.e.,

$$
L_{0}=L_{1}=L_{1}=0
$$

(or all small).

Null interaction

- Null interaction is "worst interaction".
- Why? Consider model problem (iteration)

$$
\square v=u_{1} u_{2} \quad \text { (zero initial data) }
$$

where u_{1}, u_{2} given. Study regularity of v.

- After dyadic decomposition, roughly

$$
\square \approx N_{0} L_{0}
$$

Worse regularity for v when L_{0} small.

- Previous iterates u_{1}, u_{2} : worse regularity when L_{1}, L_{2} small.
- Absolute worst: All L'small (compared to N's).

Null interaction: Improvement with null form

- Extreme case

$$
L_{0}=L_{1}=L_{1}=0
$$

Then X_{0}, X_{1}, X_{2} all lie on null cone.

- But

$$
X_{0}=X_{1}+X_{2}
$$

so only way X_{0} can end up on cone is if X_{1}, X_{2} collinear. Even more:

$$
\theta\left(\pm_{1} \xi_{1}, \pm_{2} \xi_{2}\right) \quad \text { must vanish. }
$$

- Hence null form better than standard product.

Null interaction

Null form estimate

- In general:

$$
\theta\left(\pm_{1} \xi_{1}, \pm_{2} \xi_{2}\right) \lesssim \sqrt{\frac{L_{\max }^{012}}{N_{\min }^{12}}}
$$

- Recall bilinear estimate:

$$
\begin{aligned}
&\left\|\mathbf{P}_{K_{N_{0}, L_{0}}^{ \pm 0}}\left(\mathbf{P}_{K_{N_{1}, L_{1}}^{ \pm 1}} u_{1} \cdot \mathbf{P}_{K_{N_{2}, L_{2}}^{ \pm 2}} u_{2}\right)\right\| \\
& \leq C \sqrt{N_{0} N_{\min }^{12} L_{\min }^{012} L_{\text {med }}^{012}}\left\|u_{1}\right\|\left\|u_{2}\right\|
\end{aligned}
$$

- Combine to give null form estimate

$$
\begin{aligned}
\| \mathbf{P}_{K_{N_{0}, L_{0}}^{ \pm 0}} \mathfrak{B}_{\theta}^{ \pm 1, \pm_{2}}\left(\mathbf{P}_{K_{N_{1}, L_{1}}^{ \pm 1}} u_{1}, \mathbf{P}_{K_{N_{2}, L_{2}}^{ \pm 2}} u_{2}\right) & \\
& \leq C \sqrt{N_{0} L_{0} L_{1} L_{2}}\left\|u_{1}\right\|\left\|u_{2}\right\|
\end{aligned}
$$

Application to MD: The easy case

- Recall: $|q(\mathbf{e} ; \mathbf{z})| \lesssim \underbrace{\theta_{12} \theta_{34}}_{\text {easy part }}+\underbrace{\phi \max \left(\theta_{12}, \theta_{34}\right)+\phi^{2}}_{\text {hard part }}$
- Consider easy part. Then by Cauchy-Schwarz inequality, estimate

$$
\begin{aligned}
& J_{N, L}^{\Sigma}\left(F_{1}, \ldots, F_{4}\right)=\int\left|q^{\Sigma}(\mathbf{X})\right| \chi_{\mathrm{N}, \mathrm{~L}}(\mathbf{X}) F_{1}\left(X_{1}\right) F_{2}\left(X_{2}\right) F_{3}\left(X_{3}\right) F_{4}\left(X_{4}\right) \mathrm{d} \mu \\
& \lesssim\left\|\int \chi_{K_{N_{0}, L_{0}}^{ \pm 0}}\left(X_{0}\right) \theta_{12} F_{1}^{ \pm_{1}, N_{1}, L_{1}}\left(X_{1}\right) F_{2}^{ \pm 2, N_{2}, L_{2}}\left(X_{2}\right) \delta_{X_{0}-X_{1}+X_{2}} \mathrm{~d} X_{1} \mathrm{~d} X_{2}\right\|_{L_{\chi_{0}}^{2}} \\
& \times \|\left.\int \chi_{K_{N_{0}, L_{0}}^{ \pm 0}}\left(X_{0}\right) \theta_{34} F_{3}^{ \pm 3, N_{3}, L_{3}}\left(X_{3}\right) F_{4}^{ \pm 4, N_{4}, L_{4}}\left(X_{4}\right) \delta_{X_{0}+X_{3}-X_{4}} \mathrm{~d} X_{3} \mathrm{~d} X_{4}\right|_{L_{0}^{2}} \\
& \lesssim \sqrt{N_{0} L_{0} L_{1} L_{2}} \sqrt{N_{0} L_{0} L_{3} L_{4}} \prod_{j=1}^{4}\left\|F_{j}^{ \pm j, N_{j}, L_{j}}\right\|
\end{aligned}
$$ as desired.

