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Abstract
The spectrally-hyperviscous Navier–Stokes equations (SHNSE) represent a subgrid-
scale model of turbulence for which previous studies were limited to periodic-box
domains. Then in Avrin (The 3-D spectrally-hyperviscous Navier–Stokes equations
on bounded domains with zero boundary conditions. arXiv:1908.11005) the SHNSE
was adapted to general bounded domains with zero boundary conditions. Here we
extend to this new setting the convergence and dynamical-system results in Avrin (J
DynDiffer Equ20(2):479–518, 2008) andAvrin andXiao (JDiffer Equ247(10):2778–
2798, 2009), obtaining clear and straightforward Galerkin-convergence estimates,
and in the case of decaying turbulence new convergence results featuring asymp-
totic decay rates in time. In extending the attractor-dimension results in Avrin (2008)
our new degrees-of-freedom estimates stay strictly within the Landau–Lifschitz esti-
mates (Landau and Lifshitz in Fluid mechanics, Addison-Wesley, Reading, 1959) for
most computationally-relevant parameter values and exhibit a reduction in the number
of degrees of freedom in calculations. The foundational properties of our bounded-
domain setting also allow us to adapt the quadratic-form machinery of Temam (in:
Brézis, Lions (eds) Nonlinear partial differential equations and their applications, Pit-
man, Boston, 1985; Browder (ed) Nonlinear functional analysis and its applications,
American Mathematical Society, Providence, 1986) to carry over the main inertial-
manifold results of Avrin (2008).
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J. Avrin

1 Introduction

The spectrally-hyperviscous Navier–Stokes equations (SHNSE) introduce terms
μAϕu that apply hyperviscosity concentrated on the high frequencies to the NSE
of viscous incompressible homogeneous flow:

ut + μAϕu − ν�u + (u ·∇)u + ∇ p = g,

∇ · u = 0.
(1.1)

Here u = (u1, u2, u3) is the fluid velocity, g = (g1, g2, g3) is the external force, and
p is the pressure, with ui = u(x, t), gi = gi (x, t), i = 1, 2, 3, and p = p(x, t)
where x ∈ �, a domain in R

3. As previously studied on periodic boxes the system
(1.1) becomes the hyperviscous NSE if Aϕ = Bα ≡ (−�)α for integers α � 2, and if
P ′
Ej

is the projection onto the j th eigenspace E ′
j of B, then for P ′

m ≡ E ′
1⊕ · · · ⊕E ′

m

and Q′
m = I − P ′

m , the basic assumption on the operators Aϕ as in [2,6,7] to obtain
the SHNSE is that Aϕ � Q′

mB
α in the sense of quadratic forms, i.e.,

∫
�

vAϕv dx �∫
�

vQ′
mB

αv dx for all smooth v.
The SHNSE system (1.1) is a subgrid-scale model of turbulence, adding to the NSE

an extra dissipative term (e.g. an approximation to the subgrid-scale tensor) to simulate
the dynamic effect of frequency scales too small to be resolved in computations. With
its roots in spectral-eddy viscosity as first developed in [37] (also see, e.g. [11,14,
32]), spectral hyperviscosity in application to the NSE was discussed in [11,32] and
advocated in [26,27]. The resulting SHNSE system, studied theoretically in [2,6,7,26,
27] on periodic-box domains, combines the subgrid-scale modeling and regularity of
the hyperviscous NSE (see, e.g. [1,8–10,14,33]) with the spectral accuracy philosophy
of spectral vanishing viscosity (see, e.g. [32,34,44,46,47]). See, e.g. [7,11,27] formore
discussion and references for the SHNSE and related models.

The hyperviscous NSE and SHNSE systems had not received effective treatment
on realistic domains until the results of [5]. Adaptation to the general bounded domain
case with zero (no-slip) boundary conditions requires solving several technical issues.
Additional boundary conditions need to be specified for the higher-order operators
Bα = (−�)α to be well-posed, but the extra conditions must not overdetermine the
NSE system andmust stay consistent with its physics. As discussed in [5] for example,
when α = 2 standard choices such as u = �u = 0 on � = ∂�, or u = ∂u/∂n = 0
on � (as discussed in [41]) are mathematically well-defined but are either entirely
unphysical or at best have extremely limited applicability.

All of these and related issues are resolved in [5]. Let P be the Leray projection onto
the divergence-free vectors and let A = −P� be the Stokes operator. Let 0 < λ1 <

λ2 < · · · represent the eigenvalues of A with corresponding eigenspaces E1, E2, . . .

and projections PEj . Let Pm be the projection onto E1⊕ · · · ⊕Em , and let Qm =
I − Pm . We apply P to both sides of the first equation in (1.1) and replace Aϕ with
operators Aϕ satisfying Aϕ � Qm Aα. This general assumption is sufficient for most
of our results, but to simplify technical details in Sect. 2 we will assume the explicit
computational form Aϕ = ∑m

j=m0+1 dj (λj )
αPEj + Qm Aα where for 0 < m0 � m

the {dj }mj=m0+1 are such that 0 < dj ↑1. Note in any case that all eigenspaces Ek for
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Asymptotic Galerkin convergence and dynamical system results…

k � m are under the full hyperviscous influence of the operator Aα. We then have
as justified and developed in [5] the following formulation of the SHNSE for general
bounded domains:

d

dt
u + μAϕu + νAu + P(u ·∇)u = f ,

u(x, 0) = u0(x).
(1.2)

If Pn is the projection onto E1⊕ · · · ⊕En , then for fn ≡ Pn f the Galerkin approxi-
mations to (1.2) are

d

dt
un + μAϕun + Pn P(un ·∇)un = fn,

un(x, 0) = Pnu0(x) ≡ un,0(x).
(1.3)

We review for completeness the derivation of (1.2) in Sect. 6, and in particular we
derive and apply the identity A2u = P(−�)2. We now extend to (1.2) the qualitative
theory developed for (1.1) in [2,3,6].

First we extend the Galerkin-convergence results of [6]. For L ≡ supt�0 ‖ f (t)‖2
we will use the standard a priori estimate

‖v(t)‖22 � ‖u0‖22 +
(

L

νλ1

)2
≡ U 2

L (1.4)

which we derive for completeness in Sect. 2. Here ‖v‖2 ≡ (∫
�

v ·v dx)1/2 where the
components of the vector v inR

3 are in L2(�), the set of measurable square-integrable
functions. We recall that m is the spectral cutoff such that Aϕ � Qm Aα as discussed
prior to (1.2), and for Galerkin approximates defined by (1.3) we assume that n � m to
insure that eigenspaces Ej form � j � n are under the full hyperviscous influence of
Aϕ . This is not a severe restriction since we are interested in the behavior of solutions
of (1.3) as n → ∞.

Theorem 1.1 Let u and un be solutions of (1.2) and (1.3), let UL be as in (1.4) and
suppose that m � k � n and 0 � t � T . Assuming that k is large enough so that
(8/μ)K1U 2

L � (μ/2)λ3/2k+1 where K1 is a generic constant, we have for w = u − un
and Fn = f − fn,

∥
∥A1/2Qkw(t)

∥
∥2
2 �

∥
∥A1/2Qkw(0)

∥
∥2
2 e

−νλk+1t

+
∫ t

0

(
C0

∥
∥Pk A

1/2w
∥
∥2
2 + Cn(u)

)
e−νλk+1(t−s)ds

(1.5)

and

∥
∥A1/2Pkw(t)

∥
∥2
2 �

[

‖A1/2w0‖22 +
∫ T

0
Cn(u) ds

]

e8K1U2
L t/μ (1.6)
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J. Avrin

for a constant C0 and a function Cn(u). We have from (1.5), (1.6) that ‖A1/2(u(t) −
un(t))‖22 → 0 uniformly on [0, T ] as n → ∞.

Specifically, C0 = (8/μ)K1U 2
L and Cn(u) = 4

μ
‖Qn A−1/2P(u ·∇)u‖22 + 4

ν
‖Fn‖22.

Proving Theorem 1.1 we will show that ‖A−1/2P(u ·∇)u‖2 is uniformly bounded on
[0, T ], hence from (1.6) and the dominated convergence theorem, ‖A1/2Pkw(t)‖2 →
0 uniformly, which in turn implies that ‖A1/2Qkw(t)‖2 → 0 uniformly by (1.5).

Theorem 1.1 shows that for large enough k the convergence of the high-frequency
Galerkin modes depends linearly on the convergence of the low-frequency modes and
on known or estimatable parameters. The estimates (1.5) and (1.6) are much more
direct than those in [6] and no longer require a complex series of nested integral
formulas.

The case of decaying turbulence is defined as in [3,6] by the condition

f ∈ L2([0,∞); H). (1.7)

Assuming (1.7) we obtain the next result, which shows that solutions of (1.2) can be
approximated uniformly in time with finite-dimensional Galerkin solutions.

Theorem 1.2 Under the conditions of Theorem 1.1 assume also that (1.7) holds, then
‖A1/2Pkw(t)‖22 is integrable on (0,∞) and for C0 and Cn as in Theorem 1.1 we have
for all t � 0,

∥
∥Pk A

1/2w(t)
∥
∥2
2 �

[

‖A1/2w0‖22 +
∫ ∞

0
Cn(u) ds

]

e2C0U0λ
1/2
k λ−1

1 /ν (1.8)

where U0 = ‖u0‖22 + 1
νλ1

∫ ∞
0 ‖ f ‖22ds. Thus from (1.5) we have that ‖A1/2Qkw(t)‖22

is also integrable on (0,∞) and hence ‖A1/2(u(t) − un(t))‖22 → 0 uniformly for all
t � 0 as n → ∞.

We now add a new asymptotic convergence result assuming (1.7) which estimates the
decay in time to zero of ‖A1/2(u(t)−un(t))‖2 as well as its convergence to zero in n.
Theorem 1.3 Let f satisfy (1.7), let u be the solution of (1.2), and let {un} be the
solutions of (1.3). Then forw = u−un, and Fn and Cn as in Theorem 1.1 there exists
for all n a t1 � 0 such that for all t � t0 � t1,

∥
∥A1/2w(t)

∥
∥2
2 �

∥
∥A1/2w(t0)

∥
∥2
2 e

−(ν/2)λ1(t−t0) +
∫ t

t0
Cn(u)e−(ν/2)λ1(t−s)ds. (1.9)

We will in particular show that

∫ t

t0
Cn(u)e−(ν/2)λ1(t−s)ds � 8

μνλ1
K3U

3
2 sup
t�t0

‖u(t)‖5/22

for all t � t0 whereU2 is a bound on ‖Au(t)‖22 (see (2.31) below). The right-hand side
decays faster than the convergence of ‖u(t)‖22 to zero as t0 → ∞ and thus (1.9) gives
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Asymptotic Galerkin convergence and dynamical system results…

a decay for ‖A1/2u(t)‖2 that is faster than can be obtained from the known decay of
‖u(t)‖2 and interpolation. Theorem 1.3 adapts techniques used to develop asymptotic
stability results in [3]. These we extend to (1.2) in the following, which establishes
Lyapunov stability and exponential asymptotic stability for solutions of (1.2).

Theorem 1.4 Let f satisfy (1.7), let u and v be two solutions of (1.2)with fixed forcing
data f and initial data u0 and v0. Then there exists a t1 � 0 such that for all t � t1,

∥
∥A1/2(u(t) − v(t))

∥
∥2
2 � ‖u(t1) − v(t1)‖22 e−(ν/2)λ1(t−t1), (1.10)

and given ε > 0 there exists a � > 0 such that if ‖A1/2(u0 − v0)‖2 < �, we have
‖A1/2(u(t) − v(t))‖2 < ε for all t ∈ [0, t1].
To establish Theorem 1.4 the techniques of [3] need modification to handle the case
of positive m0, where we recall that in (1.2), Aϕ = ∑m

j=m0+1 dj (λj )
αPEj + Qm Aα;

additional modifications give improved estimates on the size of t1.
The proofs of Theorems 1.1, 1.2, and 1.3 use techniques similar to those used in

the proofs of determining-mode results, which we now exhibit for (1.2).

Theorem 1.5 Let u and v be two solutions of (1.2)with initial data u0 and forcing data
f and g, respectively. Suppose that k � m is such that (6/μ)K1U 2

L � (μ/2)λ3/2k+1.
Then the first k modes are determining modes for (1.2) in the sense that for each t0 � 0
we have

‖A1/2Qk(u − v)(t)‖22
� ‖A1/2Qk(u − v)(t0)‖22 e−νλk+1(t−t0) (1.11)

+
∫ t

t0

(
6

μ
K1U

2
Lλ

3/2
k ‖Pk(u − v)(s)‖22 + 4

ν
‖ f (s) − g(s)‖22

)

e−νλk+1(t−s)ds.

Determining-mode results for the 2-D NSE (see, e.g. [17,21,22,29–31,45] and the
references therein) highlight the largely finite-dimensional character of solutions,
showing that the lower frequencies control the behaviour of the high frequencies
in the sense that if ‖Pk(u − v)(s)‖2 → 0 and ‖ f (s) − g(s)‖2 → 0 as s → ∞ then
‖A1/2Qk(u − v)(s)‖2 → 0 as s → ∞. This is shown for solutions of (1.2) in (1.11)
by choosing t0 large enough on the right-hand side.

We now discuss attractor results for (1.2), and assume in standard fashion that f is
time-independent. The identity A2u = P(−�)2 discussed above and in Sect. 6 will
allow the basic set-up in [2] to be adapted for (1.2). This will build on some of the
elements of the “CFT” framework [15,16,18,48,50] and on the methodology based
on the generalized Lieb–Thirring inequalities developed in [48–50]. Related attractor
results can be found in [12,13]. In our discussion 0 < λ1 < λ2 < · · · will always
represent the eigenvalues of A.

Kolmogorov’s mean rate of dissipation of energy in turbulent flow (see [35], and
e.g. [22,50] for further discussion) is defined as

ε = λ
3/2
1 ν lim sup

T→∞
1

T

∫ T

0
‖A1/2u‖22 ds ≡ λ

3/2
1 νET . (1.12)
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J. Avrin

The Kolmogorov length scale is lε = (ν3/ε)1/4, and 1/lε is an asymptotic estimate of
the size of the inertial range consisting of the dynamically-active modes; in cases of
interest we expect this to be large. ET is the time-averaged total enstrophy, and as in
[2] (also see, e.g. [22,50]) we set l0 = λ

−1/2
1 to represent characteristic macroscopic

length. Let dimH A and dimF A denote the Hausdorff and fractal dimensions of the
attractor A for the system (1.2). The Landau–Lifschitz estimates [39] propose the
upper bound dimH A � dimF A � [l0/lε]3 on the number of degrees of freedom
in turbulent flow; these estimates will serve as a benchmark for our new attractor
estimates.

Theorem 1.6 For a constant γα = γα(α) on the order of unity we have for the case
λα−1
m � ν/μ,

dimH A � dimF A � γα

(
λm

λ1

)3(α−1)/(2α)[ l0
lε

]3/α
(1.13)

and for the complementary case λα−1
m � ν/μ we have for a similar constant Kα ,

dimH A � dimF A � Kα

(
ν

μ

)3/(2α)

|�|(α−1)/α
[
l0
lε

]3/α
, (1.14)

where |�| is the size of the domain �.

The power 3/α on l0/lε was also derived in [51] for the hyperviscous NSE with α = 2
on periodic domains. Heremodifications are needed to handle positivem andm0 along
with adjustments for the bounded-domain setting. The choice of whether to use (1.13)
or (1.14) depends on the size of the coefficientμ according to the prescriptions in [26],
and this in turn largely depends on the choice of α as discussed in the conclusion. Note
the estimate (1.13) only depends on m, and since λm ∼ cλ1m2/3 (see, e.g. [22,50])
where c depends on the shape but not the size of �, thus the estimate (1.13) is scale-
invariant.

We will compare the results of Theorem 1.6 with the attractor estimates found
in [2] in the concluding section. The NS-α model is another SGS model for which
there are attractor estimates available [20], and these will also be compared in the
conclusion with the estimates in Theorem 1.6. The NS-α model is also referred to as
the Camassa–Holm or LANS-α model; see, e.g. [19,20,28,36,43,52] for an overview
and references.

For α = 2 we have by the remarks in the conclusion that ν/μ � 1 according to
the prescriptions in [26]. The criterion λα−1

m � ν/μ for (1.13) is thus clearly satisfied,
and to compare with the Landau–Lifschitz estimates we set λm/λ1 � (l0/lε)p for
p ∈ [1, 2]. Substituting into (1.13) we obtain

dimH A � dimF A � γα

[
l0
lε

]3p(α−1)+6/(2α)

. (1.15)

Given presently computational values of m, it is safe to assume the upper bound
λm � 1/lε . Accordingly we set p = 1 and (1.15) becomes dimH A � dimF A �

123



Asymptotic Galerkin convergence and dynamical system results…

γα[l0/lε](3α+3)/(2α) which for α = 2 is dimH A � dimF A � γα[l0/lε]9/4. Since γα

is on the order of unity it is safe to expect that γα � [l0/lε]1/4, from which we obtain
that dimH A � dimF A � [l0/lε]5/2. This estimate is not only within but definitely
less than the Landau–Lifschitz estimates.We thus have direct evidence of the potential
of (1.2) to reduce the number of degrees of freedom needed for calculations.

Ifwe setm = m0 and (λm/λ1) � (l0/lε)3/2, then from (1.15) and p = 3/2weobtain
the estimate dimH A � dimF A � γα[l0/lε]21/8. Again assuming that γα � [l0/lε]1/4,
we have dimH A � dimF A � [l0/lε]23/8, which is slightly less than the Landau–
Lifschitz estimates. Here m is well beyond the limits of present-day computations; of
theoretical interest is that we stay within the Landau–Lifschitz estimates even though
current computational techniques cannot resolve the difference between the NSE and
SHNSE systems.

For α = 8 our discussion in the conclusion shows that (1.14) is satisfied according
to the prescriptions in [26]. We estimate ET in (1.12) as in [2] through the standard
energy inequality (see (2.6) below), from which it follows in standard fashion for
L ≡ ‖ f ‖2 that

ET � L2

ν2λ1
. (1.16)

We rewrite the right-hand side of (1.14) as
(
K (2α/3)

α (ν/μ)|�|2(α−1)/3
)3/(2α)[l0/lε]3/α

≡ (ω
)3/(2α)[l0/lε]3/α and set ω
 � (l0/lε)p; to be within the Landau–Lifschitz
estimates we need 3p/(2α)+3/α = 3 or p = 14 in the case α = 8. By the definitions
of l0/lε and ET and assuming that (1.16) is a reasonable estimate for ET we obtain
K 8/21
8 (ν/μ)1/14|�|1/3 � L1/2/(λ

3/8
1 ν1/2). Applying the relationship 1/λ1 ∼ |�|2/3

(see, e.g. [22,50]) and collecting terms we have

(K8|�|1/3)7ν8 � L7μ. (1.17)

Since K8 is on the order of unity the term (K8|�|1/3)7 is roughly balanced off by the
term L7. Thus we stay within the Landau–Lifschitz estimates provided that ν8 ∼ μ.
For ν = 10−6 this is met provided that μ ∼ 10−48, which will clearly satisfy the
parameter ranges appropriate for this case as discussed in the conclusion.

We now extend results of [2] to show that the system (1.2) possesses an inertial
manifold in the case Aϕ = Qm Aα . We recall the following definition from [23,24];
also see [50]:

Definition 1.7 An inertial manifold M for (1.2) is a finite-dimensional manifold sat-
isfying:

(i) M is Lipschitz.
(ii) M is positively invariant for the semigroup, i.e., S(t)M ⊂ M for all t � 0.
(iii) M attracts exponentially all the orbits of (1.2).

Here S(t) is the mapping S(t)u0 = u(t) for each u0 ∈ H . We have that S is well-
defined for (1.2) for all t � 0 by the global-existence results of Sect. 2. We will
use the identity A2u = P(−�)2 to adapt the arguments in [2], and exploit a unique
spectral-gap property similar to that used in [2] to establish the following result.
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Theorem 1.8 Let Aϕ satisfy Pm Aϕ = 0 and Qm Aϕ � Qm Aα with α � 2. Then for
m large enough the system (1.2) has an inertial manifold M of dimension m.

We have as in [2] that M is a graph over PmH . For large enough m this says that
trajectories on M are controlled by finite-dimensional NSE dynamics. We note that
an inertial manifold for a model related to the NS-α model was established in [36].
At the end of Sect. 5 we will compare estimates on the size of the inertial manifold in
the case α = 5/2 with the estimates in Theorem 1.5.

InSect. 2wewill establish preliminary results, including the absorbing-set estimates
needed to assert the existence of an attractor for (1.2), and sketch the proof of Theorem
1.8. Theorems 1.1, 1.2, and 1.5 will be proven in Sect. 3, and Theorems 1.3 and 1.4
will be proven in Sect. 4. We will prove Theorem 1.6 in Sect. 5 and make concluding
remarks in Sect. 7.

2 Preliminaries

We define the standard Sobolev spacesWm,p(�) as follows: for integers pi let D
qi
i =

∂qi/∂xqii , i = 1, 2, 3, and let Dq = Dq1
1 Dq2

2 Dq3
3 where q = q1 + q2 + q3. Then

Wm,p(�) for 1 � p < ∞ is the set of all v ∈ L p(�) such that the distributional
derivatives Dqv exist and satisfy Dqv ∈ L p(�) for all q with 0 � q � m, and
the norm on Wm,p(�) can be expressed as ‖v‖m,p = (∑

0�q�m

∫
�

|Dqv|pdx)1/p.
When p = 2 we use the standard notation Wm,2(�) = Hm(�). If D(Bθ/2) denotes
the domain of Bθ/2 where the operator B = −
 is equipped with zero boundary
conditions on � = ∂� then we have the standard embedding D(Bθ/2) ⊂ H θ (�)

(see, e.g. [25]) and thus we can express the Sobolev inequalities on � in terms of the
operator B = −
, equipped with zero boundary conditions on � = ∂�,

‖υ‖q � M1‖Bm1/2υ‖1−θ
2 ‖Bm2/2υ‖θ

2 (2.1)

where q � 6/(3 − 2[(1 − θ)m1 + θm2]) and M1 = M1(θ, q,m1,m2,�). By [25,
Proposition 1.4], D(Aγ ) is continuously embedded into H ∩ H2γ (�) for any γ � 0,
and thus we have for a constant M0 = M0(θ, p, q,�) and for q as above that for all
v ∈ D(Aθ/2),

‖υ‖q � M1‖Bm1/2υ‖1−θ
2 ‖Bm2/2υ‖θ

2 � M0‖Am1/2υ‖1−θ
2 ‖Am2/2υ‖θ

2. (2.2)

For the semigroup exp (−t A) we have the decay estimate

‖e−t Aυ‖2 � ‖υ‖2 e−λ1t. (2.3)

Like the standard NSE, (1.2) and (1.3) satisfy energy inequalities, which we derive as
follows: let v = u or v = un , then taking the inner product of both sides of (1.6) or
(1.7) with v we have

1

2

d

dt
‖v‖22 + ν‖A1/2v‖22 + μ‖Amv‖22 = ( f , v) (2.4)
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where we recall that since ∇ ·v = 0, (P(v ·∇)v, v) = − ((∇ ·v)v, v) = 0, and
where in the case of v = un we have (Pn P(un ·∇)un, un) = (P(un ·∇)un, Pnun) =
(P(un ·∇)un, un) = 0. We have also assumed that Aϕ is as in the remarks preceding
(1.2) with (Aϕv, v) � (Amv, v) for suitably smooth vectors v.

From our assumptions on Aϕ , it also follows straightforwardly that for nonnegative
θ we have (Aϕv, Aθ v) � (Qm Aα+θ v, v) and by Poincaré’s inequality we have in turn
(Qm Aα+θ v, v) � λα−2

m (Qm A2+θ v, v). Given that m is of reasonably significant size
and α is an integer with α � 2, it is safe to assume that λα−2

m � 1. Hence we have for
nonnegative θ , (Aϕv, Aθ v) � (Qm A2+θ v, v) so for what follows we can without loss
of generality assume that Aϕ = Qm A2. Accordingly applying the Cauchy–Schwartz
and Young inequalities in standard fashion to ( f , v) in (2.4) and multiplying by 2 we
have our basic energy inequality

d

dt
‖v‖22 + ν‖A1/2v‖22 + 2μ‖Qm Av‖ � 1

νλ1
‖ f ‖22 (2.5)

where we note that by Poincaré’s inequality ‖A−1/2 f ‖2 � λ
−1/2
1 ‖ f ‖2; note that (2.5)

reduces to the standard NSE energy inequality when μ = 0. Integrating both sides of
(2.5) we have for v0 = v(x, 0),

‖v‖22 + ν

∫ T

0
‖A1/2v‖22 ds + 2μ

∫ T

0
‖Av‖22 ds � ‖u0‖22 + 1

νλ1

∫ T

0
‖ f ‖22 ds. (2.6)

In the case that (1.7) holds we have from (2.6),

‖v‖22 + ν

∫ ∞

0
‖A1/2v‖22 ds + 2μ

∫ ∞

0
‖Av‖22 ds � ‖u0‖22 + 1

νλ1

∫ ∞

0
‖ f ‖22 ds (2.7)

holds for all t � 0. Meanwhile, discarding the term 2μ‖Qm Av‖ in (2.5) and again
using Poincaré’s inequality we obtain

d

dt
‖v‖22 + νλ1‖v‖22 � 1

νλ1
‖ f ‖22 (2.8)

so that with L defined as above by L ≡ supt�0 ‖ f (t)‖2 we have

d

dt
‖v‖22 + νλ1‖v‖22 � L2

νλ1
. (2.9)

Solving the differential inequality (2.9) we have

‖v(t)‖22 � ‖v0‖22 e−νλ1t +
∫ t

0

(
L2

νλ1

)

e−νλ1(t−s)ds (2.10)
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or, since L2/(νλ1) is a constant and ‖v0‖2 � ‖u0‖2,

‖v(t)‖22 � ‖u0‖22e−νλ1t +
(

L

νλ1

)2
. (2.11)

Thus, we have the standard a priori estimate

‖v(t)‖22 � ‖u0‖22 +
(

L

νλ1

)2
≡ U 2

L . (2.12)

Next we bootstrap (2.12) to obtain an H1-bound, from which global regularity is
readily obtained by standard methods. We will then bootstrap our H1-bound to obtain
an H2-bound. Both of these bounds will be used to show the existence of a global
attractor. Standard methods can be used to obtain these bounds, so readers not needing
to see the estimates are invited to skip below past (2.34) for the proof of Theorem 1.8.
At the same time, the proofs are slightly non-standard and are our first example of
techniques using spectral decomposition that are related to the central arguments used
in establishing determining-mode results. We first focus on v = un ; taking the inner
product of both sides of (1.3) with Qk Aun for m � k < n we have

1

2

d

dt

∥
∥A1/2Qkun

∥
∥2
2 + μ

∥
∥Qk A

3/2un
∥
∥2
2

+ ν
∥
∥Qk Aun

∥
∥2
2 + (

Pn P(un ·∇)un, Qk Aun
) = ( fn, Qk Aun)

(2.13)

where we note that (v, Qk Aun) = (Qkv, Qk Aun) = (A1/2Qkv, Qk A1/2un) =
(A1/2Qkv, A1/2Qkun) for any v ∈ D(A1/2).

Now by the Cauchy–Schwartz and Young inequalities

|( fn, Qk Aun)| � ν

2
‖Qk Aun‖22 + 1

2ν
‖ f ‖22 (2.14)

where we also use the fact that ‖Pnv‖2 � ‖v‖2 for any v ∈ H . Since powers of A
commute with each of the Pn , we have

(
Pn P(un ·∇)un, Qk Aun

) = (
Pn A

−1/2P(un ·∇)un, Qk A
3/2un

)

so by the Cauchy–Schwartz and Young inequalities

∣
∣
(
Pn P(un ·∇)un, Qk Aun

)∣
∣

� 1

2μ

∥
∥A−1/2P(un ·∇)un

∥
∥2
2 + μ

2

∥
∥Qk A

3/2un
∥
∥2
2.

(2.15)
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Combining (2.14) and (2.15) with (2.13) and multiplying by 2 we have

d

dt

∥
∥A1/2Qkun

∥
∥2
2 + μ

∥
∥Qk A

3/2un
∥
∥2
2 + ν

∥
∥Qk Aun

∥
∥2
2

� 1

μ

∥
∥A−1/2P(un ·∇)un

∥
∥2
2 + 1

ν
‖ f ‖22.

(2.16)

Now A−1/2P(un ·∇)un = A−1/2Pdiv(un ⊗un) for the appropriate tensor product ⊗
while A−1/2Pdiv ≡ Tb is a bounded operator on H (see, e.g. [25, Lemma 1.3]); thus
using (2.2) there is a constant M1 such that for appropriately smooth vectors v and w,

∥
∥A−1/2P(v ·∇)w

∥
∥2
2 � ‖Tb‖22 ‖v⊗w‖22

� ‖Tb‖22 ‖v‖22 ‖w‖2∞ � M1‖Tb‖22 ‖v‖22 ‖A3/4w‖22.
(2.17)

Now, ‖A3/4un‖22 = ‖Pk A3/4un‖22 + ‖Qk A3/4un‖22; combining this with (2.16) and
(2.17) with v = w = un , setting K1 = M1‖Tb‖22, and using Poincaré’s inequality on
the left-hand side of (2.16) we have

d

dt

∥
∥A1/2Qkun

∥
∥2
2 + μλ

3/2
k+1

∥
∥Qk A

3/4un
∥
∥2
2 + νλk+1

∥
∥Qk A

1/2un
∥
∥2
2

� 1

μ
K1‖un‖22

(∥∥Pk A
3/4un

∥
∥2
2 + ∥

∥Qk A
3/4un

∥
∥2
2

) + 1

ν
‖ f ‖22.

(2.18)

Meanwhile ‖Pk A3/4un‖22 = ‖A3/4Pkun‖22 � λ
3/2
k ‖Pkun‖22 � λ

3/2
k ‖un‖22; combining

this with (2.12) and (2.18) we have

d

dt

∥
∥A1/2Qkun

∥
∥2
2 + μλ

3/2
k+1

∥
∥Qk A

3/4un
∥
∥2
2 + νλk+1

∥
∥Qk A

1/2un
∥
∥2
2

� 1

μ
K1U

2
L

∥
∥Qk A

3/4un
∥
∥2
2 + 1

μ
K1λ

3/2
k U 2

L + 1

ν
L2.

(2.19)

Now choose k (and hence n) large enough so that K1U 2
L/μ � (μ/2)λ3/2k+1, then

subtracting from both sides of (2.19) and neglecting the term (μ/2)λ3/2k+1‖Qk A3/4un‖22
on the left-hand side we have

d

dt

∥
∥A1/2Qkun

∥
∥2
2 + ν

2
λk+1

∥
∥A1/2Qkun

∥
∥2
2 � 1

μ
K1λ

3/2
k U 2

L + 1

ν
L2. (2.20)

Integrating both sides of (2.20) we obtain for d = ν/2,

∥
∥A1/2Qkun

∥
∥2
2

�
∥
∥A1/2Qkun,0

∥
∥2
2 e

−dλk+1t

+
∫ T

0

(
1

μ
K1λ

3/2
k U 2

L + 1

ν
L2

)

e−dλk+1(t−s)ds

(2.21)
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from which we obtain similarly to getting (2.12) from (2.10),

∥
∥A1/2Qkun(t)

∥
∥2
2 �

∥
∥A1/2u0

∥
∥2
2 + 1

dλk+1

(
1

μ
K1λ

3/2
k U 2

L + 1

ν
L2

)

(2.22)

where we have used the fact that ‖A1/2Qkun,0‖22 = ‖Qk Pn A1/2u0‖22 � ‖A1/2u0‖22.
But ‖A1/2Pkun‖22 � λk‖Pkun‖22 � λk‖un‖22 � λkU 2

L so, since ‖A1/2un‖22 =
‖A1/2Pkun‖22 + ‖A1/2Qkun‖22, we have, combining with (2.22),

∥
∥A1/2un(t)

∥
∥2
2

� λkU
2
L + ∥

∥A1/2u0
∥
∥2
2 + 1

dλ2k+1

(
1

μ
K1λ

3/2
k U 2

L + 1

ν
L2

)

≡ U 2
1 .

(2.23)

We thus obtain a uniform bound on ‖A1/2un(t)‖2 for k large enough and n � k. The
restriction on n which requires that n > m is not severe as outlined in the remarks
preceding Theorem 1.1. Replacing un by u and using similar (and in fact slightly
simpler) arguments we obtain

∥
∥A1/2u(t)

∥
∥2
2

� λkU
2
L + ∥

∥A1/2u0
∥
∥2
2 + 1

dλk+1

(
1

μ
K1λ

3/2
k U 2

L + 1

ν
L2

)

≡ U 2
1 .

(2.24)

With (2.23) and (2.24) and using (2.2) we obtain global H1-bounds for (1.2) and (1.3).
Refining our arguments further using (2.11) and (2.21) we have for v = u or v = un ,

∥
∥A1/2v(t)

∥
∥2
2

� λk‖u0‖22 e−νλ1t + ∥
∥A1/2u0

∥
∥2
2 e

−dλk+1t

+ λk

(
L

νλ1

)2
+ 1

dλk+1

(
1

μ
K1λ

3/2
k U 2

L + 1

ν
L2

)

.

(2.25)

Next we take the inner product of both sides of (1.3) with Qk A2un for m � k < n
then we have similarly to the derivation of (2.13) that

1

2

d

dt
‖AQkun‖22 + μ‖Qk A

2un‖22
+ ν

∥
∥Qk Au

3/2
n

∥
∥2
2 + (

Pn P(un ·∇)un, Qk A
2un

) = ( fn, Qk A
2un)

(2.26)

from which we obtain similarly to (2.16) using calculations similar to (2.14) and
(2.15),

d

dt
‖AQkun‖22 + μ‖Qk A

2un‖22 + 2ν
∥
∥Qk A

3/2un
∥
∥2
2

� 2

μ
‖(un ·∇)un‖22 + 2

μ
‖ f ‖22

(2.27)
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wherewehave used the fact that P and Pn are projections.Wehave from (2.2) that there
exists a constant M2 that ‖(un ·∇)un‖22 � ‖un‖2∞‖∇un‖22 � M2‖Aun‖22‖A1/2un‖22
while ‖Aun‖22 = ‖Pk Aun‖22 + ‖Qk Aun‖22 � λ2k‖un‖22 + ‖Qk Aun‖22; combining this
with (2.12), (2.23) and (2.27), neglecting the termμ‖Qk A2un‖22 on the left-hand side,
and using Poincaré’s inequality again we have

d

dt
‖AQkun‖22 + 2νλk+1‖AQkun‖22

� 2

μ
M2λ

2
kU

2
LU1 + 2

μ
M2‖Qk Aun‖22U1 + 2

μ
‖ f ‖22.

(2.28)

Now choose k (and hence n) large enough so that (2/μ)M2U1 � νλk+1 is satisfied as
well, then subtracting from both sides of (2.28) we obtain

d

dt
‖AQkun‖22 + νλk+1‖AQkun‖22 � 2

μ
M2λ

2
kU

2
LU1 + 2

μ
L2 (2.29)

from which, proceeding as in the development of (2.21) and (2.22), we have

‖AQkun(t)‖22 � ‖Au0‖22 e−νλk+1t + 1

νλk+1

(
2

μ
M2λ

2
kU

2
LU1 + 2

μ
L2

)

(2.30)

and then proceeding as in (2.25) we obtain for v = u or v = un ,

‖Av(t)‖22
� λ2k‖u0‖22 e−νλ1t + ‖Au0‖22 e−νλk+1t

+ λ2k

(
L

νλ1

)2
+ 1

νλk+1

(
2

μ
M2λ

2
kU

2
LU1 + 2

μ
L2

)

≡ U 2
2 .

(2.31)

From (2.11), (2.25), and (2.31) we obtain absorbing-ball behavior of (1.2) and (1.3);
in particular we have

lim sup
t→∞

‖v(t)‖22 �
(

L

νλ1

)2
≡ ρ0, (2.32)

lim sup
t→∞

∥
∥A1/2v(t)

∥
∥2
2

� λk

(
L

νλ1

)2
+ 1

dλk+1

(
1

μ
K1λ

3/2
k U 2

L + 1

ν
L2

)

≡ ρ1,

(2.33)
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and

lim sup
t→∞

‖Av(t)‖22 � λ2k

(
L

νλ1

)2
+ 1

νλk+1

(
2

μ
M2λ

2
kU

2
LU1 + 2

μ
L2

)

≡ ρ2. (2.34)

We thus have from (2.32)–(2.34) that the balls of radius ρj about zero are absorbing
sets in D(A j/2) equippedwith the norms ‖A j/2v(t)‖2, j = 0, 1, 2. From (2.2)without
loss of generality we can take the spaces D(A j/2) defined with these norms as our
Sobolev spaces of order 0, 1, 2, respectively. As in, e.g. [2] we thus have a globally
regular solution for (1.2) that has a compact attractor of finite Hausdorff and fractal
dimension.

For the proof of Theorem 1.8 wewill as was done in [2] use [50, TheoremVIII.3.2],
and as in [2] we refer to this result as Theorem GFST; it generalizes the conditions of
the main theorems of [23,24] and applies to systems of the form

du

dt
+ A1u + R(u) = f ,

u(0) = u0

(2.35)

for a linear operator A1 with dense domain in a Hilbert space H , and R a bounded map
from D(Aβ

1 ) into D(Aβ−γ
1 ) for β, γ non-negative constants to be determined below.

Theorem GFST requires the following conditions:

(1) For every u0 ∈ D(Aβ
1 ), (2.35) has a unique solution u ∈ C(R+; D(Aβ

1 )) ∩
L2((0, T )); D(Aβ+γ

1 ) and the mapping S(t) : u0 → u(t) is continuous from

D(Aβ
1 ) into itself.

(2) S(t) possesses an absorbing set B0 in D(Aβ
1 ) which is positively invariant, i.e.,

S(t)B0 ⊂ B0 for all t � 0, and the ω-limit set of B0, denoted A, is the maximal
attractor for S( ·) in D(Aβ

1 ).
(3) For some β � 0 and γ � 0 as in (5) below,

∥
∥Aβ−γ

1 R(u) − Aβ−γ
1 R(v)

∥
∥
2 � CM

∥
∥Aβ

1 (u − v)
∥
∥
2 (2.36)

for all u, v ∈ D(Aβ), ‖Aβ
1 u‖2 � M , ‖Aβ

1 v‖2 � M .

(4) There exists a ρ > 0 such that the ball of radius ρ/2 centered at 0 in D(Aβ
1 ) is

absorbing for (1.6).
(5) Let {λ1N } be the eigenvalues of A1, then there exists a function Km0 = Km0(N )

such that for N � m0,

λ1N+1 − λ1N � Km0(N )
(
(λ1N+1)

γ + (λ1N )γ
)

(2.37)

where Km0(N ) → ∞ as N → ∞.

To see that the system (1.2) meets the conditions (1)–(5) required of (2.35), we note
that (1) follows from (2.24) (or Theorem 1.1) and standard arguments, while (2) and
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(4) follow from (2.32)–(2.34). For (3) and (5) we fit (1.2) into the format of (2.35)
by setting A1 = νA + μAϕ as in [2] only now A is the Stokes operator and Aϕ

is as in (1.2), and we as in [2] take γ = 1/2 and β � 5/(4α) − 1/2 in the case
3/2 � α < 5/2, while for α � 5/2 we take β = 0. Taking R(u) = P(u ·∇)u we
have that (2.36) follows using (2.2) and arguments similar to those above used for the
proof of Theorem 1.2 to handle the Leray projection P . Meanwhile, for (2.37) we take
advantage as in [2] of a unique spectral-gap property inherent in the assumption that
Aϕ satisfies Pm Aϕ = 0 and Qm Aϕ � Qm Aα; we take N = m and note as in [2] that
λ1m+1 � μλα

m+1 so that

λ1N+1 − λ1N = (
(λ1m+1)

1/2 − (λ1m)1/2
)(

(λ1m+1)
1/2 + (λ1m)1/2

)

�
(
(μλα

m+1)
1/2 − (νλm)1/2

)(
(λ1m+1)

1/2 + (λ1m)1/2
)
.

(2.38)

As noted, e.g. in [22, Section II.6], the eigenvalues of the Stokes operator have qual-
itatively the same asymptotic growth behavior as the eigenvalues of B = −�;
in particular there is a constant c such that λn ∼ cλ1n2/3 and we have as in
[2, Section 4] that μ1/2λ

α/2
m+1 − ν1/2λ

1/2
m � (1/2)μ1/2(cλ1)α/2mα/3 provided that

m(α−1)/3 � 2(cλ1)−(α−1)/2(ν/μ)1/2. The latter inequality is satisfied by choosingm0
large enough (and hence m since m � m0). Then by the preceding remarks (2.38) is
satisfied and hence (5) follows; this completes our discussion of the proof of Theorem
1.8.

3 Proof of Theorems 1.1, 1.2, and 1.5

We first prove Theorem 1.1. Let w = u − un then subtracting (1.3) from (1.2) we
obtain the following equations for w:

wt + νAw + μAϕw + Pn P(un ·∇)w + Pn P(w ·∇)u = Fn + QnP(u ·∇)u (3.1)

where Fn = f − fn . As in the remarks preceding (2.5) without loss of generality we
can also assume that Aϕ = Qm A2. Taking the inner product of both sides of (3.1)
with Qk Aw form � k � n and proceeding similarly to the development of (2.16) we
obtain

d

dt

∥
∥A1/2Qkw

∥
∥2
2 + μ

∥
∥Qk A

3/2w
∥
∥2
2 + ν‖Qk Aw

∥
∥2
2

� 4

μ

∥
∥A−1/2P(un ·∇)w

∥
∥2
2 + 4

μ

∥
∥A−1/2P(w ·∇)u

∥
∥2
2

+ 4

μ

∥
∥Qn A

−1/2P(u ·∇)u
∥
∥2
2 + 4

ν
‖Fn‖22.

(3.2)

Wehave, using (2.12), (2.17), and remarks following (2.17),‖A−1/2P(un ·∇)w‖22 �
K1‖un‖22‖A3/4w‖22 � K1U 2

L‖A3/4w‖22 and‖A−1/2P(w ·∇)u‖22�K1‖u‖22‖A3/4w‖22
� K1U 2

L‖A3/4w‖22. Combining this with (2.2) and Poincaré’s inequality applied to
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the left-hand side of (3.2), together with ‖A3/4w‖22 = ‖Pk A3/4w‖22 + ‖Qk A3/4w‖22
we have from (3.2),

d

dt

∥
∥A1/2Qkw

∥
∥2
2 + μλ

3/2
k+1

∥
∥Qk A

3/4w
∥
∥2
2 + νλk+1

∥
∥Qk A

1/2w
∥
∥2
2

� 8

μ
K1U

2
L

(∥∥Pk A
3/4w

∥
∥2
2 + ∥

∥Qk A
3/4w

∥
∥2
2

)

+ 4

μ

∥
∥Qn A

−1/2P(u ·∇)u
∥
∥2
2 + 4

ν
‖Fn‖22.

(3.3)

We choose k large enough so that (8/μ)K1U 2
L � (μ/2)λ3/2k+1, then subtracting from

both sides of (3.3) and using that ‖Pk A3/4w‖22 � λ
1/2
k ‖Pk A1/2w‖22 we have

d

dt

∥
∥A1/2Qkw

∥
∥2
2 + μ

2
λ
3/2
k+1

∥
∥Qk A

3/4un
∥
∥2
2 + νλk+1

∥
∥Qk A

1/2w
∥
∥2
2

� 8

μ
K1U

2
Lλ

1/2
k

∥
∥Pk A

1/2w
∥
∥2
2 + 4

μ

∥
∥Qn A

−1/2P(u ·∇)u
∥
∥2
2 + 4

ν
‖Fn‖22.

(3.4)

We will need to use (3.4) below; meanwhile for the purpose at hand we neglect the
term (μ/2)λ3/2k+1‖Qk A3/4un‖22 on the left-hand side of (3.4) and integrate both sides
to obtain

∥
∥A1/2Qkw(t)

∥
∥2
2

�
∥
∥A1/2Qkw(0)

∥
∥2
2 e

−νλk+1t

+
∫ t

0

(
8

μ
K1U

2
L

∥
∥Pk A

1/2w
∥
∥2
2

+ 4

μ

∥
∥Qn A

−1/2P(u ·∇)u
∥
∥2
2 + 4

ν
‖Fn‖22

)

e−νλk+1(t−s)ds.

(3.5)

Clearly ‖A1/2Qkw(0)‖22 = ‖A1/2Qk(u−un)(0)‖22 → 0 as n → ∞ and ‖Fn(s)‖2 →
0 as n → ∞ for each s. Similarly to (2.17), from (2.2) and (2.24) it follows that there
is a constant M3 such that ‖A−1/2P(u ·∇)u‖22 � ‖Tb‖22‖u⊗u‖22 � ‖Tb‖22‖u‖44 �
‖Tb‖22M3‖A1/2u‖44 � ‖Tb‖22M3U 4

1 ; since ‖A−1/2P(u ·∇)u‖22 is therefore well-
defined and bounded we have ‖Qn A−1/2P(u(s) ·∇)u(s)‖2 → 0 as n → ∞ for
each s. Thus the convergence of the right-hand side of (3.5) to zero as n → ∞ follows
by the dominated convergence theorem if we can show that ‖Pk A1/2w(s)‖22 → 0 as
n → ∞ for each s.
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For this we first obtain an estimate for the entire difference w. Taking the inner
product of both sides of (3.1) with Aw we obtain similarly to (3.3),

d

dt

∥
∥A1/2w

∥
∥2
2 + μλ

3/2
k+1

∥
∥Qm A3/4w

∥
∥2
2

� 8

μ
K1U

2
L

(∥∥Pk A
3/4w

∥
∥2
2 + ∥

∥Qk A
3/4w

∥
∥2
2

)

+ 4

μ

∥
∥Qn A

−1/2P(u ·∇)u
∥
∥2
2 + 4

ν
‖Fn‖22

(3.6)

where we have again used the decomposition ‖A3/4w‖22 = ‖Pk A3/4w‖22 +
‖Qk A3/4w‖22 and discarded the term ν‖Aw‖22 on the left-hand side. Again with k

large enough so that (8/μ)K1U 2
L � (μ/2)λ3/2k+1, we subtract from both sides of (3.6)

and obtain similarly to (3.5),

∥
∥A1/2w(t)

∥
∥2
2

�
∥
∥A1/2w(0)

∥
∥2
2 e

−νλk+1t

+
∫ t

0

(
8

μ
K1U

2
Lλ

1/2
k

∥
∥Pk A

1/2w
∥
∥2
2

+ 4

μ

∥
∥Qn A

−1/2P(u ·∇)u
∥
∥2
2 + 4

ν
‖Fn‖22

)

e−νλk+1(t−s)ds.

(3.7)

Using the fact that ‖Pk A1/2w(t)‖22 � ‖A1/2w(t)‖22 and neglecting the exponential
terms, where not needed, we obtain from (3.7) for all t in an interval [0, T ],

∥
∥Pk A

1/2w(t)
∥
∥2
2

�
∥
∥A1/2w0

∥
∥2
2

+
∫ T

0

(
4

μ

∥
∥Qn A

−1/2P(u ·∇)u
∥
∥2
2 + 4

ν
‖Fn‖22

)

e−νλk+1(t−s)ds

+
∫ t

0

8

μ
K1U

2
Lλ

1/2
k

∥
∥Pk A

1/2w(s)
∥
∥2
2 ds.

(3.8)

Applying Gronwall’s inequality to (3.8) we obtain for

UQ,F (s) = 4

μ

∥
∥Qn A

−1/2P(u ·∇)u
∥
∥2
2 + 4

ν
‖Fn‖22,

the inequality

∥
∥Pk A

1/2w(t)
∥
∥2
2

�
[

‖A1/2w0‖22 +
∫ T

0
UQ,F (s)e−νλk+1(t−s)ds

]

e8K1U2
Lλ

1/2
k t/μ

(3.9)
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and by the same observations as those following (3.5), ‖Pk A1/2(u(t)−un(t))‖22 → 0
uniformly on [0, T ] as n → ∞, and hence ‖A1/2(u(t) − un(t))‖22 → 0 uniformly on
[0, T ] as n → ∞. Thus Theorem 1.1 follows.

In the case of decaying turbulence, in the transition from (3.2) to (3.3) we retain
the term ‖un‖22 + ‖u‖22 rather than using (2.12) and from Poincaré’s inequality

use that ‖un‖22 + ‖u‖22 � λ−1
1 (‖Au1/2n ‖22 + ‖A1/2u‖22). We then proceed as in

the developments resulting in (3.9) but now the exponential term is replaced by
exp 8

μ
K1U 2

Lλ
1/2
k λ−1

1

∫ t
0 (‖Au1/2n ‖22 +‖A1/2u‖22) ds. Meanwhile, from the remarks fol-

lowing (3.5) and from (2.24) we have

∥
∥Qn A

−1/2P(u ·∇)u
∥
∥2
2 � ‖Tb‖22 M3‖A1/2u‖22 ‖A1/2u‖22 � ‖Tb‖22 M3‖A1/2u‖22U 2

1

and so by (2.7) both ‖Qn A−1/2P(u ·∇)u‖22 and ‖Fn‖22 are integrable on [0,+∞).
Hence from (2.7) and the above remarks we have for all t ∈ [0,+∞),

∥
∥Pk A

1/2w(t)
∥
∥2
2

�
[
∥
∥A1/2w0

∥
∥2
2 +

∫ ∞

0
Cn(u) ds

]

e
2
ν
( 8

μ
K1U2

Lλ
1/2
k λ−1

1 )(‖u0‖22+ 1
νλ1

∫ ∞
0 ‖ f ‖22ds) (3.10)

which is (1.8), where again Cn(u) = 4
μ
‖Qn A−1/2P(u ·∇)u‖22 + 4

ν
‖Fn‖22. Again by

the dominated convergence theorem, ‖A1/2Pkw(t)‖22 → 0 as n → ∞ uniformly
on [0,+∞). Since ‖Pk A1/2w(t)‖22 is shown to be bounded in (3.10) as well, and
since the other terms in the integrand of (3.5) are bounded, the presence of the term
e−νλk+1(t−s)ds in the integrand shows that ‖A1/2Qkw(t)‖22 is uniformly bounded and
that ‖A1/2Qkw(t)‖22 → 0 as n → ∞ uniformly on [0,+∞). Thus ‖A1/2w(t)‖22 → 0
as n → ∞ uniformly on [0,+∞), which proves Theorem 1.2.

With these new techniques now established we sketch the proof of Theorem 1.5.
Let u and v be two solutions of (1.2) and let w = u − v. Then proceeding similarly
as in (3.3) we obtain

d

dt

∥
∥A1/2Qkw

∥
∥2
2 + μλ

3/2
k+1

∥
∥Qk A

3/4w
∥
∥2
2 + ν‖Qk Aw‖22

� 6

μ
K1U

2
L

∥
∥A3/4Pkw

∥
∥2
2 + 6

μ
K1U

2
L

∥
∥A3/4Qkw

∥
∥2
2 + 4

ν
‖ f − g‖22.

(3.11)

Choosing k � m large enough so that (6/μ)K1U 2
L � (μ/2)λ3/2k+1, we subtract from

both sides of (3.11), discard the terms (μ/2)λ3/2k+1‖A3/4Qkw‖22 and ν‖Qk Aw‖22 on

the left-hand side, use that ‖A3/4Pkw‖22 = ‖Pk A3/4w‖22 � λ
3/2
k ‖Pkw‖22 and integrate

both sides from t0 to t for some t0 � 0 to obtain similarly to (3.5),
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∥
∥A1/2Qk(u − v)(t)

∥
∥2
2

�
∥
∥A1/2Qk(u − v)(t0)

∥
∥2
2e

−tνλk+1 (3.12)

+
∫ t

t0

(
6

μ
K1U

2
Lλ

3/2
k ‖Pk(u − v)(s)‖22 + 4

ν
‖ f (s) − g(s)‖22

)

e−νλk+1(t−s)ds

which is (1.11). With Theorem 1.5 thus established we conclude the discussion in this
section.

4 Asymptotic convergence and stability in the case of decaying
turbulence

We integrate (2.8) from t0 � 0 to t � t0 to obtain

‖u(t)‖22 � ‖u(t0)‖22 e−νλ1(t−t0) + 1

νλ1

∫ t

t0
‖ f (s)‖22 e−νλ1(t−s)ds. (4.1)

We recall the following result [6, Theorem 3]:

Theorem 4.1 Let (1.2) be such that f satisfies (1.7), then

‖Aβ/2u(t)‖2 → 0 as t → ∞ (4.2)

for all β � 0 .

We first prove Theorem 1.4; adaptations of the techniques established will be used to
prove Theorem 1.3. Again we assume without loss of generality that Aϕ = Qm A2.
For solutions u and v of (1.2) we let w = u − v, subtract the two versions of (1.2),
take the inner product of both sides with AQkw for k � m, and obtain similarly to
the development of (3.3),

d

dt

∥
∥A1/2Qkw

∥
∥2
2 + μλ

3/2
k+1

∥
∥Qk A

3/4w
∥
∥2
2 + ν‖Qk Aw‖22

� 2

μ
K1

[‖u‖22 + ‖v‖22
]‖A3/4w‖22

� 2

μλ
1/2
1

K1
[‖u‖22 + ‖v‖22

]‖Aw‖22

(4.3)

where we have again used Poincaré’s inequality. Taking the inner product of both sides
of (1.2) with APkw, the termμ‖Qk A3/2w‖22 is now replaced byμ‖(Pk−Pm)A3/2w‖22
which is best discarded. We note that

(P(w ·∇)u, APku) = (
A−1/2P(w ·∇)u, A3/2Pku

)

� ‖A−1/2P(w ·∇)u‖2 ‖A3/2Pku‖2
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but ‖A3/2Pku‖2 � λ
1/2
k ‖APku‖2 so by Young’s inequality

∣
∣(A−1/2P(w ·∇)u, A3/2Pmu

)∣∣ � ν

4
‖APmu‖22 + λk

ν

∥
∥A−1/2P(w ·∇)u

∥
∥2
2 (4.4)

with a similar estimate for the term (P(u ·∇)w, APku). We combine these estimates
with (2.17), subtract the term ν

2‖APku‖22, and multiply by 2 to obtain

d

dt

∥
∥A1/2Pkw

∥
∥2
2 + ν‖Pk Aw‖22 = 4λk

ν
K1

[‖u‖22 + ‖v‖22
]‖A3/4w‖22

� 4λk

νλ
1/2
1

K1
[‖u‖22 + ‖v‖22

]‖Aw‖22.
(4.5)

Adding (4.5) to (4.3) and omitting the term μλ
3/2
k+1‖Qk A3/4w‖22 we obtain

d

dt

∥
∥A1/2w

∥
∥2
2 + ν‖Aw‖22 �

[
2

μλ
1/2
1

+ 4λm

νλ
1/2
1

]

K1
[‖u‖22 + ‖v‖22

]‖Aw‖22. (4.6)

Using Theorem 4.1 with β = 0 we assume that t1 is large enough so that for all t � t1,

[
2

μλ
1/2
1

+ 4λm

νλ
1/2
1

]

K1
[‖u(t)‖22 + ‖v(t)‖22

]
� ν

2
, (4.7)

then combining with (4.6) and again using Poincaré’s inequality we have

d

dt

∥
∥A1/2w(t)

∥
∥2
2 + ν

2
λ1

∥
∥A1/2w(t)

∥
∥2
2 � 0 (4.8)

for all t � t1, from which it is now straightforward to integrate from t1 to t to obtain

∥
∥A1/2w(t)

∥
∥2
2 �

∥
∥A1/2w(t1)

∥
∥2
2 e

−(ν/2)λ1(t−t1). (4.9)

We note that the same estimate holds for w = un − vn where un and vn are
two solutions of (1.3); the time t1 can be chosen independently of n since 0 �∫ t
0 ‖ fn(s)‖22e−νλ1(t−s)ds �

∫ t
0 ‖ f (s)‖22 e−νλ1(t−s)ds. Thus (1.10) is established.

For the second statement of Theorem 1.4 we subtract the u- and v-versions of (1.2),
take the inner product of both sides with Aw, and obtain similarly to (3.6),

d

dt
‖A1/2w‖22 + νλk+1

∥
∥Qk A

1/2w
∥
∥2
2

� 4

μ
K1U

2
L

(∥∥Pk A
3/4w

∥
∥2
2 + ∥

∥Qk A
3/4w

∥
∥2
2

) (4.10)

where we have used again ‖A3/4w‖22 = ‖Pk A3/4w‖22 + ‖Qk A3/4w‖22 and discarded

the term μλ
3/2
k+1‖Pk A3/4w‖22 on the left-hand side. With k large enough so that
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(4/μ)K1U 2
L � (μ/2)λ3/2k+1, we subtract from both sides of (4.10) and obtain sim-

ilarly to (3.7),

∥
∥A1/2w(t)

∥
∥2
2

�
∥
∥A1/2w(0)

∥
∥2
2 e

−νλk+1t

+
∫ t

0

4

μ
K1U

2
Lλ

1/2
k

∥
∥Pk A

1/2w
∥
∥2
2 e

−νλk+1(t−s)ds.

(4.11)

Using the fact that ‖Pk A1/2w(t)‖22 � ‖A1/2w(t)‖22 on the right-hand side of (4.11)
and neglecting the exponential factors we obtain for all t � 0,

∥
∥A1/2w(t)

∥
∥2
2 �

∥
∥A1/2w(0)

∥
∥2
2 +

∫ t

0

4

μ
K1U

2
Lλ

1/2
k

∥
∥A1/2w(s)

∥
∥2
2 ds. (4.12)

Applying Gronwall’s inequality to (4.12) we obtain

∥
∥A1/2w(t)

∥
∥2
2 �

∥
∥A1/2w(0)

∥
∥2
2 e

4K1U2
Lλ

1/2
k t1/μ (4.13)

for all t ∈ [0, t1]. Since w(0) = u0 − v0, we obtain the second statement of Theorem
1.4 from (4.13); note that similar arguments apply to solutions of (1.3).

To prove Theorem 1.3, for solutions u of (1.2) and un of (1.3) we let w = u − un
and Fn = f − fn as before and obtain similarly to the development of (4.6) that for
k � n,

d

dt

∥
∥A1/2w

∥
∥2
2 + ν‖Aw‖22

� 4

μ

∥
∥Qn A

−1/2P(u ·∇)u
∥
∥2
2 + 4

ν
‖Fn‖22

+ 4

[
1

μλ
1/2
1

+ λm

νλ
1/2
1

]

K1
[‖u‖22 + ‖un‖22

]‖Aw‖22.

(4.14)

Using Theorem 4.1 with β = 0 we assume that t � t1 where t1 is large enough so
that

4

[
1

μλ
1/2
1

+ λk

νλ
1/2
1

]

K1
[‖u(t)‖22 + ‖un(t)‖22

]
� ν

2
(4.15)

for all t � t1, then combining with (4.14) and using Poincaré’s inequality as before
we have

d

dt

∥
∥A1/2w(t)

∥
∥2
2 + ν

2
λ1

∥
∥A1/2w(t)

∥
∥2
2

� 4

μ

∥
∥Qn A

−1/2P(u ·∇)u
∥
∥2
2 + 4

ν
‖Fn‖22

(4.16)
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for all t � t1. Note that by the remarks following (4.9) the same time t1 can be chosen
so that (4.15) and hence (4.16) holds independently of n and simultaneously for u and
un . For t1 � t0 � t we then integrate (4.16) from t0 to t to obtain

∥
∥A1/2w(t)

∥
∥2
2

�
∥
∥A1/2w(t0)

∥
∥2
2 e

−(ν/2)λ1(t−t0) (4.17)

+
∫ t

t0

(
4

μ

∥
∥Qn A

−1/2P(u ·∇)u
∥
∥2
2 + 4

ν
‖Fn‖22

)

e−(ν/2)λ1(t−s)ds

for all t � t0, which is (1.9).
To obtain the estimate discussed in the remarks following the statement of Theorem

1.3, we have from (2.17) and the remarks following that ‖Qn A−1/2P(u ·∇)u‖22 �
K1‖u‖22 ‖A3/4u‖22, but using (2.2) together with the standard interpolation inequal-

ity ‖u‖2β,2 � ‖u‖1/θθβ,2 ‖u‖1−1/θ
2 with θ = 4/3, there exists a constant K

′
3 such that

‖A3/4u‖22 � K
′
3‖u‖1/22 ‖Au‖3/22 which after applying (2.31) we use in (4.17) with

K3 ≡ K1K
′
3 to obtain

∥
∥A1/2w(t)

∥
∥2
2

�
∥
∥A1/2w(t0)

∥
∥2
2 e

−(ν/2)λ1(t−t0) (4.18)

+
∫ t

t0

(
4

μ
K3U

3
2,L‖u‖5/22 + 4

ν
‖Fn‖22

)

e−(ν/2)λ1(t−s)ds

for all t � t0. In particular, we have by changing variables that
∫ t
t0
e−(ν/2)λ1(t−s)ds =

∫ t−t0
0 e−(ν/2)λ1s ds �

∫ ∞
0 e−(ν/2)λ1s ds = 2/(νλ1) so that from (4.18) we have

∥
∥A1/2w(t)

∥
∥2
2

�
∥
∥A1/2w(t0)

∥
∥2
2 e

−(ν/2)λ1(t−t0) + 8

μνλ1
K3U

3
2,L sup

t�t0
‖u(t)‖5/22 (4.19)

+
∫ t

t0

4

ν
‖Fn‖22 e−(ν/2)λ1(t−s)ds

for all t � t0.With this estimate establishedwe conclude our discussion in this section.

5 Attractor estimates for the SHNSE

With H = PL2(�) as above we write (1.2) as du(t)/dt = F(u(t)), t > 0,
u(0) = u0 with solution S(t) : u0 ∈ H → H ; the linearized problem is dU (t)/dt =
F ′[S(t)u0] ·U (t), U (0) = ξ ∈ H . For u0 fixed in H , let ξ1, . . . , ξM be M elements
of H and let U1, . . . ,UM be the corresponding solutions of the linearized problem.
Let qM = qM (t, u0; ξ1, . . . , ξM ) be the projection qMH = span {U1, . . . ,UM }, and
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let ϕ1(t), . . . , ϕM (t) be an orthonormal basis for qM (t)H . We need to find M so that
uniformly in space and asymptotically in time

0 � Tr F ′(S(t)u0) ◦ qM (t) =
∞∑

j=1

(
Tr F ′(u(t)) ◦ qM (t)ϕj (t), ϕj (t)

)

=
M∑

j=1

(F ′(u(t))ϕj (t), ϕj (t)).

(5.1)

Now, since ϕj ∈ H , we have (P(ϕj ·∇)u, ϕj ) = ((ϕj ·∇)u, Pϕj ) = ((ϕj ·∇)u, ϕj );
we recall also that A commutes with Qm and that Q2

m = Qm . Thus

(F ′(u) ·ϕj , ϕj ) = − ν(Aϕj , ϕj ) − μ(Aϕϕj , ϕj ) − (P(ϕj ·∇)u, ϕj )

� − ν(Aϕj , ϕj ) − μ(Qm Aαϕj , ϕj ) − (P(ϕj ·∇)u, ϕj ) (5.2)

= − ν
(
A1/2ϕj , A

1/2ϕj
) − μ

(
Qm Aα/2ϕj , Qm Aα/2ϕj

) − ((ϕj ·∇)u, ϕj ).

We have as in [48,49],

∣
∣
∣
∣

M∑

j=1

((ϕj ·∇)u, ϕj )

∣
∣
∣
∣ � |Du(x)|ρ(x) (5.3)

where

|Du(x)| =
{ 3∑

j,k=1

|Diuk(x)|2
}1/2

(5.4)

and

ρ(x) =
3∑

i=1

M∑

j=1

(ϕ j i (x))
2. (5.5)

Combining (5.2)–(5.5) with (5.1) we have

∣
∣Tr F ′(S(t)u0) ◦ qM (t)

∣
∣

� − ν

M∑

j=1

∥
∥A1/2ϕj (t)

∥
∥2
2 − μ

M∑

j=1

∥
∥Qm Aα/2ϕj (t)

∥
∥2
2 +

∫

�

|Du|ρ dx .
(5.6)

We want to apply the generalized Lieb–Thirring inequality developed in [48,49] (see
also [50]) in much the same way as we did in [2]; in order to do so we will need to
show that a(u, v) ≡ (Aα/2u, Aα/2v) defines a quadratic form satisfying the conditions
prescribed in, e.g., [50]. The most direct path to do this turns out to be through the
relation A2u = P(−�)2u which we establish in the next section. This quadratic form
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is restricted in, e.g., [50] to a closed subspace V of Hs(�) (in our case s = 2) for
which H should be the closure of V in L2(�). This is of course meant to include
standard Hilbert spaces used in NSE theory and includes H as defined above. Thus
it is reasonable to specify that for smooth enough u, v ∈ H and for natural-number-
valued choices of α � 2, by iterating the identity A2u = P(−�)2u, we have that
a(u, v) ≡ (Aα/2u, Aα/2v) = (Aαu, v) = (P(−�)αu, v). But (P(−�)αu, v) =
((−�)αu, Pv) = ((−�)αu, v) = (Bα/2u, Bα/2v) with B = −� as above. This
directly fits into the examples of suitable quadratic forms identified in [50], and in
particular a(ϕj , ϕj ) = ‖Bα/2ϕj (t)‖22 = ‖Aα/2ϕj (t)‖22. Thus the generalized Lieb–
Thirring inequality of orderm = α [50, TheoremA.4.1, Remark A.4.2] can be applied
to show that for q = 1 + 3/(2α) there exists a constant κ2 such that

∫

�

ρ(x)(2α+3)/3dx � κ2

M∑

j=1

∥
∥Aα/2ϕj (t)

∥
∥2
2. (5.7)

The constant κ2 depends only on q, α, and the shape (but not the size) of �. With
these developments, with (5.6), (5.7), and Young’s inequality we can proceed as in the
remarks following [2, Theorem 9] to obtain

∣
∣Tr F ′(S(t)u0) ◦ qM (t)

∣
∣

� − ν

M∑

j=1

∥
∥A1/2ϕj (t)

∥
∥2
2 − μ

M∑

j=1

∥
∥Qm Aα/2ϕj (t)

∥
∥2
2

+ εpκ1

M∑

j=1

∥
∥Aα/2ϕj (t)

∥
∥2
2 + cp‖Du‖qq .

(5.8)

where

p = q

q − 1
= 2α + 3

3
,

εp = μ

2λα−1
m κ1

,

cp = p − 1

pqε1/(p−1)
p

= 2α

2α + 3

(
3

2α + 3

)3/(2α)(2λα−1
m κ1

μ

)3/(2α)

≡ cα

(
2λα−1

m κ1

μ

)3/(2α)

.

This is the direct analogue of [2, (3.13)] but now established for solutions of (1.2).
Wefirst establish (1.14);we subtract and addμ

∑M
j=1 ‖Pm Aα/2ϕj (t)‖22 to both sides

of (5.6) and use the estimate ‖Pm Aα/2ϕj (t)‖22 � λα−1
m ‖A1/2Pmϕj (t)‖22 to obtain
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∣
∣Tr F ′(S(t)u0) ◦ qM (t)

∣
∣

� − ν

M∑

j=1

∥
∥A1/2ϕj (t)

∥
∥2
2 − μ

M∑

j=1

∥
∥Aα/2ϕj (t)

∥
∥2
2 (5.9)

+ μλα−1
m

M∑

j=1

∥
∥A1/2ϕj (t)

∥
∥2
2 + εp

∫

�

ρ(x)(2α+3)/3dx + cp‖Du‖qq

where we have used Young’s inequality with εp = μ/(2κ1) and cp = cα(2κ2/μ)3/(2α)

where p = q/(q−1) and q = 1+3/(2α) as before. Applying (5.7) to (5.9) we obtain

∣
∣Tr F ′(S(t)u0) ◦ qM (t)

∣
∣

� − (
ν − μλα−1

m

) M∑

j=1

∥
∥A1/2ϕj (t)

∥
∥2
2 (5.10)

− μ

M∑

j=1

∥
∥Aα/2ϕj (t)

∥
∥2
2 + μ

2

M∑

j=1

∥
∥Aα/2ϕj (t)

∥
∥2
2 + cp‖Du‖qq .

We now invoke the size restriction μλα−1
m � ν, omit the resulting non-positive term

(ν − μλα−1
m )

∑M
j=1 ‖A1/2ϕj (t)‖22, and combine the other terms involving the Aα/2ϕj

to obtain from (5.10),

∣
∣Tr F ′(S(t)u0) ◦ qM (t)

∣
∣ � − μ

2

M∑

j=1

∥
∥Aα/2ϕj (t)

∥
∥2
2 + cp‖Du‖qq . (5.11)

Nowby [50, LemmaVI.2.1],
∑M

j=1 ‖Aα/2ϕj (t)‖22 � λα
1+· · ·+λα

M � (cλ1)α(3/(2α+
3))M (2α+3)/3 where again we use λj ∼ cλ1 j2/3. Using this and applying Hölder’s
inequality to the term ‖Du‖qq as was done in [2] we obtain from (5.11),

∣
∣Tr F ′(S(t)u0) ◦ qM (t)

∣
∣

� − μ

2
(cλ1)

α 3

2α + 3
M (2α+3)/3 + cp|�|(2α−3)/(4α)

∥
∥A1/2u

∥
∥q
2 .

(5.12)

Using Hölder’s inequality again on 1
T

∫ T
0 ‖A1/2u‖q2 ds as was done in [2] and recalling

the definition of c′ we then see from (5.12) that to have

lim sup
T→∞

1

T

∫ T

0
Tr F ′((S(t))u0) ◦ qm(t) dt � 0
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uniformly in space we need that

3μ

4α + 6
(cλ1)

αM (2α+3)/3

� cp|�|(2α−3)/(4α)

[

lim sup
T→∞

1

T

∫ T

0

∥
∥A1/2u

∥
∥2
2 ds

](2α+3)/(4α)

.

(5.13)

With ε = λ
3/2
1 ν lim supT→∞ 1

T

∫ T
0 ‖A1/2u(s)‖22 ds and setting lε = (ν3/ε)1/4 and

l0 = 1/λ1/21 , we obtain the condition

3μ

4α + 6
(cλ1)

αM (2α+3)/3

� cp|�|(2α−3)/(4α)ν(2α+3)/(2α)λ
(2α+3)/(8α)
1

[
l0
lε

](2α+3)/α

.

(5.14)

Using the definition of cp following (5.9), using as noted, e.g., in [22,50] that λ1 ∼
c′′|�|−2/3, and collecting terms in (5.14) we have the condition

λα
1M

(2α+3)/3

� 4α + 6

3
(c′′)(2α+3)/(8α)cα

· (2κ1)
3/(2α)

(
ν

μ

)(2α+3)/(2α)

|�|(α−3)/(3α)

[
l0
lε

](2α+3)/α

.

(5.15)

Again using the relationship between λ1 and |�| we have for a constant d = d(c, c′′)
(which will also absorb various powers of 2),

M (2α+3)/3

� 4α + 6

3
dcακ

3/(2α)
1

(
ν

μ

)(2α+3)/(2α)

|�|(2α+3)(α−1)/(3α)

[
l0
lε

](2α+3)/α (5.16)

so that, solving for M in (5.16) and setting Kα = [((4α + 6)/3)dcακ
3/(2α)
1 ]3/(2α+3)

results in the condition

M � Kα

(
ν

μ

)3/(2α)

|�|(α−1)/α
[
l0
lε

]3/α
(5.17)

from which (1.14) follows by the opening remarks of this section.
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For the proof of (1.13) we assume that μλα−1
m � ν and use this in the form

μ � νλ
−(α−1)
m in (5.6) to obtain

∣
∣Tr F ′(S(t)u0) ◦ qM (t)

∣
∣

� − ν

M∑

j=1

∥
∥A1/2ϕj (t)

∥
∥2
2

− νλ−(α−1)
m

M∑

j=1

∥
∥Qm Aα/2ϕj (t)

∥
∥2
2 +

∫

�

|Du|ρ dx .

(5.18)

Now we subtract and add νλ
−(α−1)
m

∑M
j=1 ‖Pm Aα/2ϕj (t)‖22 to (5.18) and again use

‖Pm Aα/2ϕj (t)‖22 � λα−1
m ‖A1/2Pmϕj (t)‖22 to obtain

∣
∣Tr F ′(S(t)u0) ◦ qM (t)

∣
∣

� − ν

M∑

j=1

∥
∥A1/2ϕj (t)

∥
∥2
2 − νλ−(α−1)

m

M∑

j=1

∥
∥Aα/2ϕj (t)

∥
∥2
2

+ ν

M∑

j=1

∥
∥Pm A1/2ϕj (t)

∥
∥2
2 +

∫

�

|Du|ρ dx .

(5.19)

Canceling terms accordingly we have from (5.19)

∣
∣Tr F ′(S(t)u0) ◦ qM (t)

∣
∣ � − νλ−(α−1)

m

M∑

j=1

∥
∥Aα/2ϕj (t)

∥
∥2
2 +

∫

�

|Du|ρ dx . (5.20)

Now we use Young’s inequality with εp = ν/(2λα−1
m κ1), cp = cα(2λα−1

m κ1/ν)3/(2α)

and p, q as before to obtain

∣
∣Tr F ′(S(t)u0) ◦ qM (t)

∣
∣

� − νλ−(α−1)
m

M∑

j=1

∥
∥Aα/2ϕj (t)

∥
∥2
2 + εp

∫

�

ρ(x)(2α+3)/3dx + cp‖Du‖qq .
(5.21)

Applying (5.7) to (5.21) we have

∣
∣Tr F ′(S(t)u0) ◦ qM (t)

∣
∣ � − νλ

−(α−1)
m

2

M∑

j=1

∥
∥Aα/2ϕj (t)

∥
∥2
2 + cp‖Du‖qq . (5.22)
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We now proceed as in the calculations following (5.11); the role of μ will be now
played by νλ

−(α−1)
m so that similarly to (5.14) we obtain the condition

3νλ
−(α−1)
m

4α + 6
(cλ1)

αM (2α+3)/3

� cp|�|(2α−3)/(4α)ν(2α+3)/(2α)λ
(2α+3)/(8α)
1

[
l0
lε

](2α+3)/α

.

(5.23)

Now we again use the relationship between λ1 and |�| to obtain from (5.23) the
following expression involving only λ1:

3νλ
−(α−1)
m

4α + 6
(cλ1)

αM (2α+3)/3

� (c′′)(9−6α)/(8α)cpν
(2α+3)/(2α)λ

(3−α)/(2α)
1

[
l0
lε

](2α+3)/α

.

(5.24)

Let γα be the same as Kα but with d replaced by a similar constant d1, then proceeding
as in the calculations following (5.14) with μ replaced by νλ

−(α−1)
m and noting that

λ−α
1 λ

(3−α)/(2α)
1 = λ

(2α+3)(1−α)/(2α)
1 we derive from (5.24) the condition

M � γα

(
λm

λ1

)3(α−1)/(2α)[ l0
lε

]3/α
(5.25)

which is (1.13), and thus the proof of Theorem 1.6 is complete.
For α = 5/2 we have the same estimate (μc1)−1(2 + νλ

1/4
1 G)2 as in [2] on

the dimension of M where c1 is a generic constant and G = L/(ν2λ
3/4
1 ) is the

3-D Grashoff number (see, e.g. [22,50]); we have as discussed in [2] that l0/lε �
G1/2. The exponent α = 5/2 is close enough to 2 that we can again use (1.13) and
substituting accordingly we obtain the estimate γ5/2(λm/λ1)

9/5G3/5. The inertial-
manifold dimension estimate above is larger than the attractor estimate because of
the higher power on G (again because the power on α is close to 2 we have (2 +
νλ

1/4
1 )(μc1)−1 ∼ ν/μ ∼ 1). Meanwhile, by assuming asymptotically that UL ∼

L/(νλ1) = (ν/λ
1/4
1 )G the estimate (6/μ)K1U 2

L � (μ/2)μλ
3/2
k+1 from Theorem 1.5

can be written as 24/3(ν/μ)4/3λ
−1/3
1 G4/3 � λk+1. This becomes 4c2(ν/μ)2λ21G

2 �
k + 1 where c2 is a generic constant, again using λm ∼ cλ1m2/3 with m replaced by
k + 1. Since ν/μ ∼ 1 we see that the estimate for the number of determining modes
is in fact similar to the estimate for the dimension of the inertial manifold, suggesting
that the former (which is easier to obtain), can be used to estimate the latter. That both
are larger than the attractor estimate is commensurate with the fact that A ⊆ M.
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6 Derivation of the SHNSE on bounded domains

The derivation of (1.2) begins in [5] in the hyperviscous NSE case Aϕ = Bα by
applying the Leray projection P to both sides of (1.1). This requires making sense
of the operator PBα, which is done by first noting as in [42] that the Stokes operator
A = −P� satisfies Au = −�u + ∇ ps(u) where ps(u) solves the boundary-value
problem

�ps(u) = 0, x ∈ �,

n ·∇ ps(u) = n ·�u, x ∈ �.
(6.1)

From the decomposition P(−�u) = −�u + ∇ ps(u) we obtain

A2u = P(−�)P(−�) = P(−�)(−�u + ∇ ps(u))

= P(−�)2u + P(−�)(∇ ps(u))
(6.2)

and using (6.1) and the commutativity of spatial derivatives inside � we have
P(−�)(∇ ps(u)) = −P∇(�ps(u)) = 0 in �. Combining with (6.2) we have in
�,

A2u = P(−�)2u. (6.3)

Since A is well-defined assuming zero boundary conditions, P(−�)2u = A2u is
well-defined as a self-adjoint operator assuming the conditions u = Au = 0 on �.
By induction using (6.3) we have for any integer α � 2 that P(−�)αu = Aαu is
well-defined as a self-adjoint operator assuming the conditions u = Au = · · · =
Aα−1u = 0 on �. That imposing these extra conditions preserves the physics of the
NSE was shown in [4] in which these conditions were shown to necessarily hold for
the NSE in the no-slip case if the forcing data f = Pg is smooth enough, i.e., satisfies
f ∈ D(Aα−1), which of course includes the unforced case f = 0.
We thus obtain a definition of the hyperviscous NSE on general bounded domains

� which is physically sound by adding the term μ(−�)αu to the NSE, applying
P to both sides, invoking (6.3), and associating Aα with the boundary conditions
u = Au = · · · = Aα−1u = 0 on � to obtain

d

dt
u + μAαu + νAu + P(u ·∇)u = f ,

u(x, 0) = u0(x).
(6.4)

To derive the SHNSE from (6.4) we let 0 < λ1 < λ2 < · · · represent the eigenvalues
of A with corresponding eigenspaces E1, E2, . . . We set Qm = I − Pm where Pm
is the projection onto E1⊕ · · · ⊕Em , and replace Aα in (6.4) with operators Aϕ

satisfying Aϕ � Am = Qm Aα, which in particular includes operators in the explicit
computational form Aϕ = ∑m

j=m0+1 dj (λj )
αPEj + Qm Aα. For such operators Aϕ we

thus obtain as in [5] the following formulation of the SHNSE for general bounded
domains:
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d

dt
u + μAϕu + νAu + P(u ·∇)u = f ,

u(x, 0) = u0(x).
(6.5)

which is (1.2). In addition to the derivation of (1.2), the capability for solutions of
(1.2) to approximate NSE solutions was demonstrated in [5] by establishing H1(�)-
convergence of solutions of (1.2) to solutions of the NSE as μ → 0 or as m → ∞ on
intervals [0, T ] on which there is a common H1(�)-bound. It was also shown in [5]
that the Stokes-pressure formulation of the NSE developed in [42] can be extended to
a suitably similar formulation for (1.2).

7 Conclusion

In [2], in the periodic case it was shown for a constant K0 on the order of unity that

dimH A � dimF A � K0

(
ν

μ

)9/(10α)[
λm

λ1

]9(α−1)/(10α)[ l0
lε

](6α+9)/(5α)

. (7.1)

A basic sense of how these estimates compare with those in Theorem 1.6 can be
obtained by considering the borderline case μλα−1

m = ν; we set, e.g., α = 2 and
replace ν/μ with λm in (7.1) to obtain

dimH A � dimF A � K0(λm)9/20[λm/λ1]9/20[l0/lε]21/10;
again using that 1/λ1 is proportional to |�|2/3 this becomes dimH A � dimF A �
K0|�|3/10[λm]9/10[l0/lε]21/10, and rewriting (1.13) in similar fashion we have
dimH A � dimF A � K0|�|1/2[λm]3/4[l0/lε]3/2. The power on |�| is slightly higher
in the latter estimate but the power on the growth term λm is comparably lower. Mean-
while the power on the key term l0/lε is markedly lower, which would seem to be
the overriding consideration with the possible exception of extremely large domains.
Similar considerations apply to (1.14). Beyond this the estimates (1.13) and (1.14) not
only contribute the lower power on l0/lε but isolate the dependencies on λm/λ1 and
ν/μ and help enable the favorable comparisons with the Landau–Lifshitz estimates
that follow (1.15).

In the formulation derived in [43] on bounded domains the NS-α model takes the
form

ut + νAu +Uα1(u) + (u ·∇)u + ∇ p = − (I − α1�)−1∇ p + F,

∇ ·u = 0
(7.2)

where A is again the Stokes operator and Uα1(u) = α2
1(I − α1�)−1∇ ·(∇u ·∇Tu +

∇u ·∇u + ∇Tu ·∇u). (We have used α1 as the small “alpha” parameter in the above,
which is consistent with the notation in [20] and distinguishes this parameter with the
exponent α in (1.1)–(1.3).) This form of the NS-α model seems to offer the closest
comparison with other SGS models via the term Uα1(u). The following attractor
estimates for the NS-α model were established on periodic domains in [20] for a
generic constant c:
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dimH A � dimF A � c(α2λ1)
−3/4[l0/lε]3 ∼ cα−3/2|�|1/2[l0/lε]3. (7.3)

Though it is theoretically remarkable that the power on l0/lε in (7.3) matches the
Landau–Lifschitz power of 3, at the same time the right-hand side of (7.3) grows
rapidly without bound as α1 → 0, heuristically how the NS-α system approaches the
NSE. For α1 = 1/100, we have α

−3/2
1 = 1000 so for |�| � 1 the estimate (7.3) is at

least 1000 times larger than the Landau–Lifschitz estimates. Though arguments have
been made as in [19] to suggest that the NS-α model reduces the number of degrees of
freedom in calculations, this is not exhibited directly by (7.3), whereas the estimates
in Theorem 1.6 lead to direct evidence of degrees-of-freedom reduction for (1.2) as
discussed following (1.15).

In the spectral hyperviscosity model discussed in [26], the counterparts of the
coefficients μ and m0 in (1.2) are chosen to depend on certain negative and positive
powers, respectively, of the truncation order N according to a specific version of
spectral vanishing viscosity methodology. In particular, μ = εN = N−β in [26] with
β < 8/7 forα = 2. Setting N = 500would be a fairly safe representative upper bound
given the analogous calculations for high Reynolds number using spectral vanishing
viscosity in [44], in which N is roughly on the order of 300. We have for the upper
bound β = 8/7 that μ = εN is larger than 1.3×10−3 while in high-Reynolds number
turbulence generally ν is significantly smaller than 10−4. Thus for α = 2 we have a
computational example in which the ratio ν/μ is less than unity. On the other hand,
if α = 8 as used in [8–10,33] we have in [26] that β < 224/19 so for, e.g., β = 11
and N even as low as N = 50 we have that μ = εN is smaller than 4.9×10−18.
For ν = 10−6 or even ν = 10−9, the ratio ν/μ is clearly large enough so that for
computationally realistic values of m the conditions of (1.14) are satisfied.

The high-Reynolds-number wind tunnel results in [44] suggest the potential of the
SHNSE as a computational tool for studying high-Reynolds-number turbulence given
its similarities to spectral-vanishing viscosity as well as its robust qualities discussed
above. Indeed, as noted in [32], spectral vanishing viscosity can be viewed as “using
hyperviscous dissipation that will affect only the high Fourier modes”.

Locally in time as is well known, subgrid-scale models do not always effectively
capture all of the dynamical effects of the unresolved scales, in particular backscatter,
in which significant amounts of dynamic energy are contributed from the higher (yet
unresolved) frequencies in the inertial range. At the same time the results and discus-
sion in [38,40] show that subgrid-scale dissipation can in the limit of time-averaging
represent a reasonably goodmodel of the effects of the unresolved inertial-range scales;
this connects in particular to the attractor results above given the central role of the
time-averaged quantity defined by (1.12). Given their time-independence, steady-state
solutions of (1.2) would seem to be worthy topics for further study.
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