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1. Introduction

It is generic phenomena that solutions of homogeneous systems of quasi-linear hyperbolic conser-
vation laws break down after a finite elapse of time. A balance is often attained with the presence of
various sources S[U ],

Ut + ∇x · F (U ) = S[U ],

in which F (U ) is the flux and the source S[U ] may prevent finite time breakdown from happening if
initial configuration is above certain threshold, see [4] for the notion of critical thresholds.

Our main point of interest in this paper is to investigate the critical threshold phenomena asso-
ciated with hyperbolic relaxation systems. Such a study enables us to gain a global picture on both
global in time regularity and the finite time breakdown within one framework.

To be specific, we consider a relaxation system of the form

vt − ux = 0, (1.1)

ut + p(v)x = 1

τ

(
ue(v) − u

)
, (1.2)

t > 0, x ∈ R, subject to bounded and differentiable initial data

(v, u)(x,0) = (v0, u0)(x), x ∈ R, (1.3)

where v and u are scalars, ue(v) is the equilibrium flux, p(v) is the pressure, and τ > 0 is a relaxation
parameter. This system is an important example of a class of 2 × 2 hyperbolic relaxation systems.

From now on we impose the following basic assumption.

Assumption 1. For all v under consideration it holds:

• p′(v) < 0 and p′′(v) > 0;
• the subcharacteristic condition

λ1(v) � −u′
e(v) � λ2(v), (1.4)

where λi are eigenvalues of system (1.1), (1.2)

λ1 = −λ2 = −√−p′(v). (1.5)

The assumption p′(v) < 0 ensures the strict hyperbolicity of the system, and p′′(v) > 0 implies
that both characteristic fields are genuinely nonlinear.

It is known that the subcharacteristic type condition (1.4) is necessary even for linear stability as
evidenced by Whitham’s work [30]. The subcharacteristic condition for a class of 2 × 2 relaxation
systems is coined in [25] for nonlinear stability of shock waves. There have been studies on stability
structure conditions for more general relaxation systems [1,32] as well as relaxation methods for con-
structing weak solutions for conservation laws [8,9,27]. Particularly there has appeared a remarkable
development of the stability theory for various relaxation systems in past decades, see, e.g., [7,12,13,
19–21,25,31,33–35], all relying on certain dissipative stability conditions and smallness restriction on
initial perturbations.

The classical stability analysis often gives only the solution behavior near some special wave pat-
terns, however, it does not tell us what large perturbations are allowed before losing stability. Recently
there have been some research activities geared towards understanding the fully nonlinear dynamics
of the systems via a new notion of critical threshold (CT), which serves to describe the conditional
stability for underlying physical problems. It is shown that the CT phenomena does reflect the delicate
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balance among various forcing mechanisms. These include CTs for Euler–Poisson systems [4,23,29], ro-
tating shallow water equations [2,24], restricted Euler equations [22] as well as nonlocal dissipative
and dispersive models [5,16–18], among others. Many of the ideas can be traced back to the work [4]
by Engelberg, Liu and Tadmor.

Along this direction in [14,15], we obtained both large time regularity and finite time breakdown
for a specific traffic flow model—a 2 × 2 hyperbolic relaxation system. We took advantage of a special
feature of the underlying traffic model, namely, the flux p(v) is related to the equilibrium velocity
ue(v) in a specific way [14,15]. This special feature enabled us to decouple slope dynamics of the
Riemann invariants and track the dynamics of the whole system effectively.

In this work we consider a more general 2 × 2 relaxation system (1.1), (1.2). We are still concerned
with both global in time regularity and finite-time singularity in solutions by identifying proper
threshold conditions. The thresholds are represented in terms of the initial slopes of the Riemann
invariants and the initial density.

To present our main results, we now introduce the following notations:

r± = (−p′(v)
)1/4(

ux ∓ √−p′(v)vx
)

(1.6)

and choose a fixed v∗ such that the following quantities

G±(v) := 1

2τ

v∫
v∗

(
1 ∓ u′

e(s)√−p′(s)

)(−p′(s)
)1/4

ds − 2

τ p′′(v)

(
1 ± u′

e(v)√−p′(v)

)(−p′(v)
)5/4

(1.7)

are well defined.
The main result of this paper can be stated as follows.

Theorem 1.1. Consider the relaxation system (1.1), (1.2) subject to C1 bounded initial data (v0, u0)(x). Under
Assumption 1, there exist C1 < C2 , depending only on initial data (v0, u0), such that

C1(u0, v0) � v(x, t) � C2(u0, v0), ∀x ∈ R,

for t � 0 as long as the C1 solution exists. Furthermore:

(i) If for at least one point x ∈ R either

r+(x,0) < − 1

2τ

v0(x)∫
v∗

(
1 − u′

e(s)√−p′(s)

)(−p′(s)
)1/4

ds + inf
v∈[C1,C2] G+(v)

or

r−(x,0) < − 1

2τ

v0(x)∫
v∗

(
1 + u′

e(s)√−p′(s)

)(−p′(s)
)1/4

ds + inf
v∈[C1,C2] G−(v)

holds, then the solution must develop a finite-time singularity where either r+ or r− goes to −∞.
(ii) In addition to Assumption 1, if the amplitude of initial data (u0, v0) is such that

inf
v∈[C1,C2]

(
λ

3/2
2 (v)

p′′(v)

(
λ2(v) ± u′

e(v)
))

� 1

4

C2∫
C

(
λ2(s) ∓ u′

e(s)
)
λ

−1/2
2 (s)ds, (1.8)
1
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then the solution remains smooth for all time, provided that for all x ∈ R it holds

r±(x,0) � − 1

2τ

v0(x)∫
v∗

(
1 ∓ u′

e(s)√−p′(s)

)(−p′(s)
)1/4

ds + sup
v∈[C1,C2]

G±(v). (1.9)

Remark 1.1. (i) The thresholds depend only on the relative size of initial configuration and their slopes.
Our result goes beyond the scope of classical stability analysis.

(ii) Note that both upper and lower thresholds stated in the theorem are independent of choice
of v∗ .

(iii) Under condition (1.8), the lower thresholds on the right-hand side of (1.9) are negative, see
Remark 2.1. Thus global smooth solutions exist for some initial data with negative Riemann invariant
slopes. Furthermore, the magnitudes of the negative slopes are proportional to 1

τ which are not nec-
essarily small. These are in sharp contrast to the generic breakdown in the homogeneous hyperbolic
systems [11].

(iv) The condition (1.8) actually requires that the subcharacteristic condition (1.4) is satisfied
strictly, i.e., λ1(v) < −u′

e(v) < λ2(v).

Taking ue(v) = 0 in the relaxation system (1.1), (1.2), we obtain the isentropic Euler system with
damping:

vt − ux = 0, (1.10)

ut + p(v)x = − 1

τ
u, (1.11)

t > 0, x ∈ R.
This system has been studied previously by many authors, e.g., [3,6,28]. Theorem 1.1 yields the

critical threshold conditions for (1.10), (1.11). This and other example applications will be presented in
Section 5.

Finally we turn to the semi-linear case [9], p(v) = −α2 v , α > 0, in the relaxation system (1.1),
(1.2),

vt − ux = 0, (1.12)

ut − α2 vx = 1

τ

(
ue(v) − u

)
, (1.13)

t > 0, x ∈ R.
The subcharacteristic condition (1.4) thus reduces to

−α � −u′
e(v) � α, (1.14)

for v in question. Convergence to equilibrium of this semi-linear system was studied in [26]. Theo-
rem 1.1 does not apply directly since in the proof genuine nonlinearity is essentially used. But formally
we see that in this case G± = −∞. The solution may not experience any singularity in a finite elapse
of time.

In fact, we prove the following result in Section 4.

Theorem 1.2. Consider the semi-linear relaxation system (1.12), (1.13) subject to C1 bounded initial data
(v0, u0)(x). Under the subcharacteristic assumption (1.14), the Cauchy problem (1.12), (1.13), (1.3) has a unique
C1 solution for all time t > 0.
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We now conclude this section by outlining the rest of this paper. In Section 2 we show the L∞
bounds for solutions of system (1.1), (1.2), which are essential for estimating the slope dynamics.
We then derive a dynamic system for two nonlinear quantities involving solution derivatives and
state the critical threshold results. In Section 3, we establish both lower and upper thresholds for a
model ordinary differential equation, which when applied to the derived slope dynamics leads to the
claimed threshold result. Global smoothness result for semi-linear system (1.12), (1.13) is presented
in Section 4. We then apply Theorem 1.1 to obtain critical threshold results for the isentropic Euler
system with damping (1.10), (1.11) and to relaxation system (1.1), (1.2) with some specific choices of
the pressure and the equilibrium function in Section 5. Concluding remarks are provided in Section 6.

2. Reformulation of the problem

We introduce Riemann invariants of system (1.1), (1.2)

R± = u ∓ m(v), m(v) :=
v∫

v∗

√−p′(s)ds, (2.1)

where v∗ > 0 is a fixed number, which map (u, v) to (R−, R+), and vice versa by

u = 1

2

(
R− + R+)

, v = m−1
(

1

2

(
R− − R+))

. (2.2)

Riemann invariants thus satisfy

R−
t + λ1 R−

x = 1

τ

(
ue(v) − u

)
, (2.3)

R+
t + λ2 R+

x = 1

τ

(
ue(v) − u

)
, (2.4)

t > 0, x ∈ R, subject to the corresponding initial data

R±(x,0) = R±
0 (x) = u0(x) ∓ m

(
v0(x)

)
, x ∈ R. (2.5)

Through this reformulated system, the existence of a uniform invariant region for the relaxation sys-
tem (1.1), (1.2) is ensured by the subcharacteristic condition (1.4), as shown in [10].

Lemma 2.1. Consider the relaxation system (1.1), (1.2) subject to data (1.3). Let v1 < v2 , and R±
i (v, u) be

respectively level curves of R± through the equilibrium point (vi, ue(vi)), i = 1,2. If the subcharacteristic
condition (1.4) holds, then for any v ∈ [v1, v2], the equilibrium curve u = ue(v) lies in the domain enclosed
by the level curves R±(v, u) = R±

i .

Again due to the subcharacteristic condition (1.4), the equilibrium curve u = ue(v) can be ex-
pressed as

R+ = Φ
(

R−)
,

where Φ is a monotone function determined from

R+ + R−

2
= ue

(
m−1

(
R− − R+

2

))
.
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Theorem 2.1. Consider the relaxation system (1.1), (1.2) subject to data (1.3). Under Assumption 1, we have:

(i) If the initial data (1.3) lie on equilibrium curve, i.e., u0 = ue(v0), then maximum principle holds for Rie-
mann invariants, i.e.,

inf
x∈R

R±
0 (x) � R±(x, t) � sup

x∈R

R±
0 (x). (2.6)

(ii) For general initial data (1.3), the Riemann invariants are bounded by

min
{

inf
x∈R

R−
0 (x),Φ−1

(
inf
x∈R

R+
0 (x)

)}
� R−(x, t) � max

{
sup
x∈R

R−
0 (x),Φ−1

(
sup
x∈R

R+
0 (x)

)}
, (2.7)

min
{

inf
x∈R

R+
0 (x),Φ

(
inf
x∈R

R−
0 (x)

)}
� R+(x, t) � max

{
sup
x∈R

R+
0 (x),Φ

(
sup
x∈R

R−
0 (x)

)}
. (2.8)

Proof. (i) From Lemma 2.1 it follows that the region enclosed by the level curves R±(v, u) = R±
i is

an invariant region, leading to the stated maximum principle.
(ii) If the initial data do not lie on the equilibrium curve u = ue(v), we extend the domain to a

larger domain so that

R±
1 = min

{
inf
x∈R

R±
0 (x),Φ−1

(
inf
x∈R

R∓
0 (x)

)}
, R±

2 = max
{

sup
x∈R

R±
0 (x),Φ−1

(
sup
x∈R

R∓
0 (x)

)}
.

This is then reduced to case (i). �
Theorem 2.1 gives a precise estimate of the lower and upper bounds for both u and v . The bounds

for v ,

C1(u0, v0) � v(x, t) � C2(u0, v0),

are needed in expressing the threshold curves in terms of some functions of v ∈ I , where the interval
I is determined by the initial data with

I = [
C1(u0, v0), C2(u0, v0)

]
, (2.9)

where

C1(u0, v0) = m−1
(

1

2

(
min

{
inf
x∈R

(
u0 + m(v0)

)
(x),Φ−1

(
inf
x∈R

(
u0 − m(v0)

)
(x)

)}

− max
{

sup
x∈R

(
u0 − m(v0)

)
(x),Φ

(
sup
x∈R

(
u0 + m(v0)

)
(x)

)}))
,

C2(u0, v0) = m−1
(

1

2

(
max

{
sup
x∈R

(
u0 − m(v0)

)
(x),Φ

(
sup
x∈R

(
u0 + m(v0)

)
(x)

)}

− min
{

inf
x∈R

(
u0 + m(v0)

)
(x),Φ−1

(
inf
x∈R

(
u0 − m(v0)

)
(x)

)}))
.

We now estimate the derivatives of the solution through

r± = (−p′(v)
)1/4

R±
x = (−p′(v)

)1/4(
ux ∓ √−p′(v)vx

)
. (2.10)

It is clear that the boundedness of (ux, vx) is equivalent to the boundedness of r± for v ∈ I .
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In order to estimate the quantities r± , we first derive a dynamic system for them. We define

a = 1

4
p′′(v)

(−p′(v)
)−5/4

(2.11)

and

w = u′
e(v)/λ2(v). (2.12)

Assumption 1 implies that for all v ∈ I

0 < inf
v∈I

a(v) � a(v) � sup
v∈I

a(v), |w| � 1.

We further set

b± = 1 ± w

2τ
, g± = − 1

2τ

v∫
v∗

(1 ∓ w)
(−p′(s)

)1/4
ds, (2.13)

which satisfy

b± � 0, g± � 0.

Lemma 2.2. The dynamic systems for r± , defined in (2.10), are

(∂t + λ1∂x)(r
− − g−) + a(r−)2 + b−r− = 0, (2.14)

(∂t + λ2∂x)(r
+ − g+) + a(r+)2 + b+r+ = 0, (2.15)

x ∈ R, t > 0.

Proof. Set s± = R±
x , and differentiate (2.3) and (2.4) w.r.t. x, respectively, to have

s−
t + λ1s−

x + λ1,v vxs− =
(

1

τ

(
ue(v) − u

))
x
,

s+
t + λ2s+

x + λ2,v vxs+ =
(

1

τ

(
ue(v) − u

))
x
,

t > 0, x ∈ R.
Here and in what follows λv denotes the partial differentiation of λ in terms of v .
Let

h = 1

2
ln(λ2) = 1

2
ln(−λ1). (2.16)

Differentiate v along the first characteristic curve x′
1(t) = λ1 to have

(∂t + λ1∂x)v =: v ′ = (R−)′ − (R+)′

2mv
= (λ2 − λ1)R+

x

2λ2
= s+. (2.17)

Similarly, we have (∂t + λ2∂x)v = s− . Using again m(v) = (R− − R+)/2 we obtain

λ1,v vx = λ1,v
(s− − s+) = hv(s+ − s−).
2mv
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This and (2.17) lead to

λ1,v vx = hv v ′ − hv s− = h′ − hv s−.

Using (2.12), we have

(
1

τ

(
ue(v) − u

))
x
= −1 + w

2τ
s− − 1 + w

2τ
s+. (2.18)

Substitution of these into the above equation for s− yields

(s−)′ + h′s− − hv(s−)2 = −1 + w

2τ
s− − 1 + w

2τ
s+.

From (2.10), we see that r− = s−eh . This together with (2.17) gives

(r−)′ − hv e−h(r−)2 = −b−r− − 1 + w

2τ
eh v ′,

where b− is defined in (2.13).
From the definition of g− in (2.13) and eh = √

λ2 = (−p′(v))1/4, we see that the last term is
nothing but (g−)′ . Also we have

−hv e−h = 1

4
p′′(v)

(−p′(v)
)−5/4 = a > 0,

as defined in (2.11). Thus we derived Eq. (2.14).
Similarly, we derive Eq. (2.15).
Lemma 2.2 is thus proved. �
The decoupled dynamics for r± enables us to identify both upper and lower thresholds for the

reformulated system. The thresholds for the ordinary differential equations are given in next section
in Lemma 3.1. We now proceed to state the threshold conditions for r± to be derived from applying
Lemma 3.1 to system (2.14), (2.15).

Theorem 2.2. (i) If at least at one point x ∈ R, either

r+(x,0) < g+(
v0(x)

) + inf
v∈I

(
− g+(v) − b+(v)

a(v)

)

or

r−(x,0) < g−(
v0(x)

) + inf
v∈I

(
−g−(v) − b−(v)

a(v)

)

holds, the solution of system (2.14), (2.15) must develop singularity at a finite time.
(ii) If

inf
v∈I

(
b±

a

)
� sup g±(v) − inf

v∈I
g±(v), (2.19)
v∈I
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then the solution of system (2.14), (2.15) remains smooth for all time, provided for all x ∈ R

r±(x,0) � g±(
v0(x)

) + sup
v∈I

(
−g±(v) − b±(v)

a(v)

)
. (2.20)

Our main result stated in Theorem 1.1 is a straightforward consequence of Theorem 2.2.

Remark 2.1. We remark that the right-hand side of (2.20) is negative. Indeed, we derive from (2.13)
that

g±(
v0(x)

) + sup
v∈I

(
−g±(v) − b±(v)

a(v)

)
� g±(

v0(x)
) + sup

v∈I

(−g±(v)
) + sup

v∈I

(
−b±(v)

a(v)

)

� sup
v∈I

g±(v) − inf
v∈I

g±(v) − inf
v∈I

b±(v)

a(v)

� 0,

where the last inequality holds due to condition (2.19).

3. A key lemma

Along each characteristic field, the two Eqs. (2.14), (2.15) for r± are ordinary differential equations
of the same form

d

dt
(r − g) + ar2 + br = 0, r(0) = r0,

which can be written as

d

dt
A + a(t)

(
A − b1(t)

)(
A − b2(t)

) = 0, A(0) = A0, (3.1)

with both a > 0 and b1 � b2 being uniformly bounded for all time.

Lemma 3.1. Consider Eq. (3.1) for A with inf a > 0, b1 � b2 and that a,b1,b2 are uniformly bounded. We
have:

(i) If A0 < min b1 , then solution to (3.1) will experience a finite time blow-up at 0 < t∗ � t∗ < +∞

lim
t→t∗

A(t) = −∞,

where t∗ satisfies

t∗∫
0

a(s)ds = 1

min b2 − min b1
ln

(
1 + min b2 − min b1

min b1 − A0

)

which equals to 1
min b2−A0

if min b2 = min b1 .

(ii) If there exists a constant b̄ such that

b1(t) � b̄ � b2(t),
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then (3.1) admits a unique global bounded solution satisfying

b̄ � A(t) � max{A0,max b2},

provided A0 � b̄.

Proof. Set τ = ∫ t
0 a(s)ds, which maps t ∈ [0,∞) to τ ∈ [0,∞) with ∞ = ∫ ∞

0 a(s)ds. Then Eq. (3.1)
reduces to

d

dτ
A + (A − b1)(A − b2) = 0, A(0) = A0.

It is easy to see that A � max{A0,max < b2}.
(i) In order to prove the blow-up result, we consider the following auxiliary problem

d

dτ
A∗ + (

A∗ − min b1
)(

A∗ − min b2
) = 0, A∗(0) = A0,

which has only local solution up to τ ∗ if A0 < min b1, with

τ ∗ = 1

min b2 − min b1
ln

(
1 + min b2 − min b1

min b1 − A0

)

which equals to 1
min b2−A0

if min b2 = min b1.
Let B = A − A∗ , then it solves the following equation

d

dτ
B + B

(
B + 2A∗ − b1 − b2

) + C = 0,

where

C = (
A∗ − b1

)(
A∗ − b2

) − (
A∗ − min b1

)(
A∗ − min b2

)
= (

A∗ − min b1
)
(min b1 + min b2 − b1 − b2) + (b1 − min b1)(b2 − min b1) � 0,

where b2 � min b1 has been used.
These together lead to

d

dτ
B + B

(
B + 2A∗ − b1 − b2

)
� 0, B(0) = 0.

Therefore

B(τ ) � 0

for as long as the solution B exists.
It follows that the blow-up time τ∗ of A is less than or equal to the blow-up time τ ∗ of A∗ since

A(τ ) � A∗(τ )

for as long as both solutions A and A∗ exist.
(ii) We now consider an auxiliary problem

d
Ā + ( Ā − b1)( Ā − b̄) = 0, Ā(0) = A0,
dτ
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which has a global bounded solution if Ā0 � b̄ and

Ā(τ ) � b̄ � b1, ∀τ > 0.

Indeed, Ā satisfies

d

dτ
( Ā − b̄)e

∫ τ
0 ( Ā(s)−b1(s))ds = 0

which implies that

Ā = b̄ + (A0 − b̄)e− ∫ τ
0 ( Ā(s)−b1(s))ds � b̄ > −∞

provided that Ā0 � b̄.
Let B = A − Ā, then it solves the following equation

d

dτ
B + B(B + 2 Ā − b1 − b2) + C = 0,

where

C = ( Ā − b1)(b̄ − b2) � 0.

These together lead to

d

dτ
B + B(B + 2 Ā − b1 − b2) � 0, B(0) = 0.

Therefore

B(τ ) � 0, ∀τ > 0.

Hence if A0 � b̄ we have

A � Ā � b̄,

where b̄ serves as a lower threshold. This combined with the upper bound A � max{A0,max b2} leads
to the desired estimate. �

Applying this key lemma to Eqs. (2.14), (2.15) for r± , where

A = r± − g±, b2 = −g±, b1 = −g± − b±

a
,

taking b̄ = max b1, the desired threshold conditions stated in Theorem 2.2 follow immediately.
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4. Global smoothness in semi-linear relaxation system

Consider a semi-linear system

vt − ux = 0, (4.1)

ut − α2 vx = 1

τ

(
ue(v) − u

)
, (4.2)

t > 0, x ∈ R, where α > 0. Assume the subcharacteristic condition (1.14).
The Riemann invariants are

R± = u ∓ αv, (4.3)

which map (u, v) to (R−, R+), and vice versa by

u = 1

2

(
R− + R+)

, v = 1

2α

(
R− − R+)

. (4.4)

The Riemann invariants satisfy

R−
t − αR−

x = 1

τ

(
ue(v) − u

)
, (4.5)

R+
t + αR+

x = 1

τ

(
ue(v) − u

)
, (4.6)

t > 0, x ∈ R, subject to the corresponding initial data

R±(x,0) = R±
0 (x) = u0(x) ∓ αv0(x), x ∈ R. (4.7)

The uniform boundedness of R± follows from an invariant region under the subcharacteristic condi-
tion.

Set s± = R±
x , and differentiate (4.5) and (4.6) w.r.t. x, respectively, to have

s−
t − αs−

x = −α + u′
e(v)

2τα
s− − α + u′

e(v)

2τα
s+,

s+
t + αs+

x = −α + u′
e(v)

2τα
s− − α + u′

e(v)

2τα
s+,

t > 0, x ∈ R.
Let

b = α − u′
e(v)

2τα
, g = αv + ue(v)

2τα
.

A similar calculation as before gives

(∂t − α∂x)g = α + u′
e(v)

2τα
s+.

Then the equation for s− becomes

(∂t − α∂x)(s− + g) + bs− = 0.
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Along the first characteristic field x1(t) = x1(0) − αt , this is just a linear ODE with bounded b. The
solution s− exists for all time and remains bounded. The same claim applies to s+ too.

Thus we have proved

Proposition 4.1. Consider the semi-linear system (4.5), (4.6) subject to C1 bounded initial data (R−
0 , R+

0 )(x).
Under the subcharacteristic assumption (1.14), there exist K1 < K2 , depending only on initial data (R−

0 , R+
0 )

such that

K1 � R±(x, t) � K2, ∀(t, x) ∈ R
+ × R.

Furthermore, the C1 solution remains smooth for all time t > 0.

5. Example applications

We now illustrate the critical thresholds stated in Theorem 1.1 for (1.1), (1.2) with some specific
choices of the pressure and the equilibrium function.

Example 1. p(v) = e−v , ue(v) = 0. In this case we have

r± = (
ux ∓ e−v/2 vx

)
e−v/4

and the subcharacteristic condition (1.4) is satisfied.
Substituting the pressure and the equilibrium function into (1.7) and taking v∗ = 0, we have

G±(v) = 2
(
1 − 2e−v/4)/τ .

Now substituting the pressure and the equilibrium function into (1.8), we derive

0 < vmax − vmin � 4 ln 2.

Here and in what follows vmax and vmin denote the global bounds for v(x, t) as identified by C2 and
C1 in (2.9), depending only on the amplitude of initial data (v0, u0)(x).

Corollary 5.1. Consider the damping system (1.10), (1.11) with p(v) = e−v , subject to C1 bounded initial
data (1.3).

(i) If for at least one point x ∈ R either of

u0,x ∓ e−v0/2 v0,x <
2

τ

(
1 − 2e

v0(x)−vmin
4

)

holds, then the solution must develop a finite-time singularity when either ux or vx becomes unbounded.
(ii) Assume that 0 < vmax − vmin � 4 ln 2, the solution remains smooth for all time, provided for all x ∈ R it

holds

u0,x ∓ e−v0/2 v0,x � 2

τ

(
1 − 2e

v0(x)−vmax
4

)
.

Example 2. p(v) = 1
γ v−γ and ue(v) = 1

1−γ v(γ −1)/2 where γ > 3. In this case we have

r± = (
ux ∓ v− γ +1

2 vx
)

v− γ +1
4

and the subcharacteristic condition (1.4) is satisfied.
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Substituting the pressure and the equilibrium function into (1.7) and taking v∗ = 1, we have

G+(v) = 4

τ

γ − 2

(3 − γ )(γ + 1)
v

3−γ
4 − 1

τ (3 − γ )
, G−(v) = 4

τ

γ

(3 − γ )(γ + 1)
v

3−γ
4 − 3

τ (3 − γ )
.

Now substituting the pressure and the equilibrium function into (1.8), we derive

1 <
vmax

vmin
�

(
4γ

3(γ + 1)

)4/(γ −3)

,

where the right-hand side is greater than one when γ > 3. In the case 1 � γ � 3 a similar but
different condition can be derived from the additional assumption (1.8).

Corollary 5.2. Consider the relaxation system (1.1), (1.2) with p(v) = 1
γ v−γ and ue(v) = 1

1−γ v(γ −1)/2 for

γ > 3, subject to C1 bounded initial data (1.3).

(i) If for at least one point x ∈ R either

u0,x − v−(γ +1)/2
0 v0,x <

v0(x)

τ (γ − 3)

(
1 − 4(γ − 2)

γ + 1

(
vmin

v0(x)

)(3−γ )/4)

or

u0,x + v−(γ +1)/2
0 v0,x <

v0(x)

τ (γ − 3)

(
1 − 4γ

γ + 1

(
vmin

v0(x)

)(3−γ )/4)

holds, then the solution must develop a finite-time singularity when either ux or vx becomes unbounded.
(ii) Assume that

1 <
vmax

vmin
�

(
4γ

3(γ + 1)

)4/(γ −3)

,

the solution remains smooth for all time, provided for all x ∈ R it holds

u0,x − v−(γ +1)/2
0 v0,x � v0(x)

τ (γ − 3)

(
1 − 4(γ − 2)

γ + 1

(
vmax

v0(x)

)(3−γ )/4)

and

u0,x + v−(γ +1)/2
0 v0,x � v0(x)

τ (γ − 3)

(
1 − 4γ

γ + 1

(
vmax

v0(x)

)(3−γ )/4)
.

6. Concluding remarks

We proved global in time regularity and finite-time singularity formation of solutions simultane-
ously by showing the critical threshold phenomena for p-system with relaxation. In particular, we
identified lower thresholds for finite-time singularity in solutions and upper thresholds for the global
existence of the smooth solutions. The thresholds are represented in terms of the initial slopes of
the Riemann invariants and the initial density, see (1.6). Our results are distinct from previous global
stability results for 2 × 2 hyperbolic relaxation systems. The identified thresholds depend only on the
relative size of initial data and their slopes.
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We then discussed applications of Theorem 1.1 to relaxation system (1.1), (1.2) with some specific
choices of the pressure and the equilibrium function. In particular, we obtained threshold conditions
for the isentropic Euler system with damping (1.10), (1.11). Global smoothness for semi-linear system
(1.12), (1.13) is also presented.

We hope that our result is proven helpful for understanding nonlinear dynamics in more general
systems of quasi-linear hyperbolic conservation laws with sources, which will be one of our future
research subjects.
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