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Now, we bound small and large scale parts as follows

|Φ>r(ρ
′′, δzu

′, δzu
′)| � 1

r
|ρ ′′|2|u′|24

and

|Φ<r(ρ
′′, δzu

′, δzu
′)| �

√
r|ρ ′′|2|u′|2

W3/4,4 ,

where in the latter we used the Hölder and Gagliardo–Sobolevskii definition of W 3/4,4 space. Optimizing
over r we obtain

|Φ(ρ ′, δzu
′, δzu

′′)| � |ρ ′′|2|u′|2/3
4 |u′|4/3

W3/4,4

and by Gagliardo–Nirenberg,

|u′|W3/4,4 � |u′′|1/2

H1/2 |u′|1/2
∞ ,

and interpolation we obtain

|Φ(ρ ′, δzu
′, δzu

′′)| � |ρ ′′|2|u′|2/3
4 |u′|2/3

∞ |u′′|2/3

H1/2 � 1

ε
|ρ ′′|3/2

2 |u′|4|u′|∞ + ε|u′′|2
H1/2 .

With ε < ρ−/2 the last term is absorbed by the dissipation. Finally, by Gagliardo–Nirenberg we have

|u′|4 � |u′′|1/2
2 |u|1/2

∞ . (6.25)

Recalling that |u|W1,∞ is under control, we finally obtain

|Φ(ρ ′, δzu
′, δzu

′′)| � C|ρ ′′|3/2
2 |u′′|1/2

2 |u′|∞ + ε|u′′|2
H1/2 � CX + ε|u′′|H1/2 .

For the other term Φ(δzρ
′, δzu′, u′′) the splitting is necessary but optimization is not. We have, in view of

(6.25),

Φ>1(δzρ
′, δzu

′, u′′) � |ρ ′|4|u′|4|u′′|2 � |ρ ′′|1/2
2 |u′′|3/2

2 � X.

As to Φ<1, we write δzu′(x) = δzu′(x)−zu′′(x)+zu′′(x), and note that |δzu′(x)−zu′′(x)| � |z|3/2D1/2u′′(x).
So, we have

|Φ<1(δzρ
′, δzu

′, u′′)| �
∣∣∣∣
∫

Hϕρ
′(x)|u′′(x)|2dx

∣∣∣∣ + |ρ ′|∞|Du′′|2|u′′|2

� |Hϕρ
′|∞|u′′|22 + 1

ε
|ρ ′|2∞|u′′|22 + ε|u′′|2

H1/2 .

Note that since Hϕ is a bounded Fourier multiplier, by the log-Sobolev inequality, we have

|Hϕρ
′|∞ � |ρ ′|∞(1 + log+ |ρ ′′|2) � |ρ ′|∞(1 + log+ X).
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So,

|Φ<1(δzρ
′, δzu

′, u′′)| � C(1 + |ρ ′|∞ + |ρ ′|2∞ + |u′|∞)X(1 + log+ X) + ε|u′′|2
H1/2 .

Taking into account the control over W 1,∞ norms, we have proved the bound

|T (ρ ′, u′)u′′| � CX(1 + log+ X) + ε|u′′|H1/2 .

Next, let us bound the dissipation term

∫∫
T (ρ, u′′)u′′ dy dx = −Φ(ρ, δzu

′′, δzu
′′) + Φ(δzρ, δzu

′′, u′′).

Obviously,

Φ(ρ, δzu
′′, δzu

′′) � ρ−|u′′|2
H1/2 .

As to Φ(δzρ, δzu′′, u′′) we have

Φ>r(δzρ, δzu
′′, u′′) � 1

r
|u′′|22

and

Φ<r(δzρ, δzu
′′, u′′) � |ρ ′|∞

∫
R

|u′′(x)|
∫

|z|<2r

∣∣∣∣δzu′′

z

∣∣∣∣ dz dx �
√

r|ρ ′|∞|u′′|2|u′′|H1/2 .

Optimizing we obtain

Φ(δzρ, δzu
′′, u′′) � |ρ ′|2/3

∞ |u′′|4/3
2 |u′′|2/3

H1/2 � ε|u′′|2
H1/2 + 1

ε
|ρ ′|∞|u′′|22

� ε|u′′|2
H1/2 + CX(1 + log+ X),

which closes the estimates with the help of dissipation.
It remains to estimate the last term. By switching x and y we obtain

∫∫
T (ρ ′′, u)u′′ dydx =

∫∫
ρ ′′(x)(u(x) − u(y))u′′(y)

dy dx

|x − y|2

=
∫∫

ρ ′′(x)(u(x) − u(y))(u′′(y) − u′′(x))
dy dx

|x − y|2

+
∫∫

ρ ′′(x)u′′(x)(u(x) − u(y))
dy dx

|x − y|2

= Φ(ρ ′′, δzu, δzu
′′) +

∫
ρ ′′u′′Λ(u) dx.

(6.26)
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Clearly, by the log-Sobolev inequality,

∣∣∣∣
∫

ρ ′′u′′Λ(u) dx

∣∣∣∣ � |ρ ′′|2|u′′|2|Λu|∞ � |u′|∞X(1 + log+ X).

For the F-term, we have

|Φ>r(ρ
′′, δzu, δzu

′′)| � 1

r
|ρ ′′|2|u′′|2,

while

|Φ<r(ρ
′′, δzu, δzu

′′)| � |u′|∞
∫

|ρ ′′(x)|
∫

|z|<2r

|δzu′′(x)|
|z| dz dx � |u′|∞

√
r|ρ ′′|2|u′′|H1/2 .

Optimizing, we get

|Φ(ρ ′′, δzu, δzu
′′)| � |ρ ′′|2|u′′|1/3

2 |u′|2/3
∞ |u′′|2/3

H1/2 � ε|u′′|2
H1/2 + 1

ε
|ρ ′′|3/2

2 |u′′|1/2
2 |u′|∞ � CX.

We have proved that

∂t|u′′|22 � −ε|u′′|2
H1/2 + CX(1 + log+ X).

As to quantity e, we apply Lemma 5.1 to obtain

∂t|e′|22 � CX.

Putting the estimates together, (6.23) follows.

6.4. Control over H3 via H2 and W1,∞

For a given classical solution (u, ρ) ∈ C([0, T); H3) we have established uniform bounds on |ux, ρx|∞
and |u, ρ|H2 on the entire interval [0, T). We now seek to establish final control over the H3-norms. Note
that we already have estimate (6.13) which with the new information readily implies

∂t|e′′|22 � |e′′|22 + |u′′′|22.

Now we get to bounds on |u′′′|22. Not surprisingly all of the estimates mimic the already obtained sharper
estimates for H2 with the use of dissipation. In what follows we will indicate necessary changes and
refer to appropriate places in Section 6.3 for details. Also, we will drop from the estimates all quantities
that are already known to be bounded, such as |u, ρ|H2 , etc. Thus, following (6.4) we can see that all the
terms on the left hand side obey the bound by |u′|∞|u′′′|22 � |u′′′|22. We are left with the four terms on the
right-hand side:

T (ρ ′′′, u)u′′′, T (ρ ′′, u′)u′′′, T (ρ ′, u′′)u′′′, T (ρ, u′′′)u′′′.
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First, the dissipation term obeys the same bound (6.8) where we now keep the dissipation :

∫
T (ρ, u′′′)u′′′ dx � −ρ−|u′′′|2

H1/2 + C|u′′′|22(|ρ|∞ + |ρ ′|∞) � −ρ−|u′′′|2
H1/2 + C|u′′′|22. (6.27)

Next, the term T (ρ ′′′, u)u′′′ will be estimated in the same way as (6.26) with replacements ρ ′′ → ρ ′′′,
u′′ → u′′′. We have the bound

|T (ρ ′′′, u)u′′′| � |ρ ′′′|2|u′′′|2|Λu|∞ + ρ−
10

|u′′′|2
H1/2 + 10

ρ−
|ρ ′′′|3/2

2 |u′′′|1/2
2 .

Since |Λu|∞ � |u|H2 < C and |ρ ′′′|2 � |e′′|2 + |u′′′|2 we have

|T (ρ ′′′, u)u′′′| � |e′′|22 + |u′′′|22 + ρ−
10

|u′′′|2
H1/2 .

Next, the term T (ρ ′′, u′)u′′′ will also be estimated as in (6.26) with a simple replacement u → u′, i.e.,
raising the derivative of u by one on every step. We obtain directly,

|T (ρ ′′, u′)u′′′| � |ρ ′′|2|u′′′|2|Λu′|∞ + ε|u′′′|2
H1/2 + 1

ε
|ρ ′′|3/2

2 |u′′′|1/2
2 |u′′|∞.

Dropping |ρ ′′|2 and using that |Λu′|∞, |u′′|∞ � |u|H3 , we obtain

|T (ρ ′′, u′)u′′′| � ρ−
10

|u′′′|2
H1/2 + |u|2

H3 � ρ−
10

|u′′′|2
H1/2 + C + |u′′′|22.

Finally, the term T (ρ ′, u′′)u′′′ can be estimates as term (6.24) by raising the derivative of u by one and
with the use of boundedness of |ρ ′′|2, |ρ ′|∞. We obtain

|T (ρ ′, u′′)u′′′| � ε|u′′′|2
H1/2 + 1

ε
|ρ ′′|3/2

2 |u′′|4|u′′|∞ + |ρ ′′|1/2
2 |u′′′|3/2

2

+
∣∣∣∣
∫

u′′(x)Hρ ′(x)u′′′(x) dx

∣∣∣∣ + |ρ ′|∞|u′′′|22.

We have trivially, |u′′|4|u′′|∞ � |u|2
H3 , and

∣∣∣∣
∫

u′′(x)Hρ ′(x)u′′′(x) dx

∣∣∣∣ � |u′′|2|u′′′|2|Hρ ′|∞ � |u′′′|2|Hρ ′′|2 � |u′′′|2.

This completes the estimate for the H3-norm Y : Y ′ � CY on the time interval of existence. This completes
the proof.
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ERRATUM: EULERIAN DYNAMICS WITH A COMMUTATOR
FORCING

ROMAN SHVYDKOY AND EITAN TADMOR

The publication [1] has a minor gap in the argument presented in Section 6.2 where the
authors establish control over the first derivatives of density and momentum. Specifically,
the bound on Λρ used in the momentum equation involves term

√
Dρ′(x), which propagates

into formula (6.21). At that point the authors combined (6.21) with (6.19) to get rid of the
D-term. The mistakes presents in the fact that the point x at which the D-term is evaluated
in 6.19 is different from the point x at which it is evaluated in 6.21. Hence the values may
be different.

To avoid using combination of 6.19 and 6.21 we argue as follows. We produce a uniform
bound on |ρ′′|2 on the time interval in question. This uniform bound, by Sobolev embedding,

implies that ρ′ ∈ C 1
2 uniformly. Then the trivial bound

|Λρ|∞ 6 |ρ′|C1/2 ,

implies uniform control over Λρ. Hence it is not necessary to resort to 6.19 to contain Λρ,
and the rest of the estimates on m′ follow as documented in [1].

To achieve uniform bound on |ρ′′|2 we differentiate the density equation twice:

∂tρ
′′ + uρ′′′ + u′ρ′′ + e′′ρ+ 3e′ρ′ + 2eρ′′ = −2ρ′′Λρ− 3ρ′Λρ′ − ρΛρ′′.

Using that u′ = e+ Λρ, we obtain

∂tρ
′′ + uρ′′′ + e′′ρ+ 3e′ρ′ + 3eρ′′ = −3ρ′′Λρ− 3ρ′Λρ′ − ρΛρ′′.

At this point we know that |e(k)| . ρ(k), and we have uniform bounds on ρ, ρ′. So, testing
with ρ′′, integrating by parts in uρ′′′ρ′′ term, and using the e quantity again, we obtain

∂t|ρ′′|22 . |ρ′′|2 + |ρ′′|22 + |Λρ|∞|ρ′′|22 + |ρ′′|2|Λρ′|2 −
∫
T
ρρ′′Λρ′′dx.

Using that |Λρ′|2 . |ρ′′|2, and log-Sobolev inequality

|Λρ|∞ 6 |ρ′|∞(1 + log+ |ρ′′|2) . 1 + log+ |ρ′′|2,
we further obtain

∂t|ρ′′|22 . C + |ρ′′|22(1 + log+ |ρ′′|2)−
∫
T
ρρ′′Λρ′′dx.

Using symmetrization in the remaining dissipation term we have

(0.1) −
∫
T
ρρ′′Λρ′′dx = −

∫
T
ρDρ′′dx+R,

where

R =

∫
T
ρ′′(x)

∫
T

(ρ(x)− ρ(y))(ρ′′(x)− ρ′′(y))

|x− y|2
dydx.

Date: October 21, 2018.
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Using the bound |ρ′| < C we further conclude

|R| .
∫
T
|ρ′′(x)|

∫
T

|ρ′′(x)− ρ′′(y)|
|x− y|

dydx 6
∫
T
|ρ′′(x)|

√
Dρ′′dx 6 |ρ′′|2

√∫
T
Dρ′′dx.

By Young, the latter is bounded by

|R| 6 ε

∫
T
Dρ′′dx+ Cε|ρ′′|22,

where ε is smaller than the lower bound on the density on the given time interval. This gets
the D-term absorbed into dissipation term in (0.1). We thus arrive at

∂t|ρ′′|22 . C + |ρ′′|22(1 + log+ |ρ′′|2).
The result follows by integration.

Since in the estimates above we relied on second order a priori bound |e′′| . |ρ′′| it is
necessary to raise the regularity class from H3 as in [1] to H4 so that the local transport
equation for e′′ can be solved classically. The idea to avoid using higher order a priori
bounds |e(k)| . |ρ(k)| is to abandon the use of momentum equation for m, where e quantity
is explicitly present, and instead come back to the u-equation. This was performed in [1] up
to the order 3 space H4, and the argument is entirely similar going one more derivative up
to H4. We therefore state our final result as follows.

Theorem 0.1. Consider the system of equations (1.1), [1], with 1 6 α < 2 subject to initial
data (u0, ρ0) ∈ H4(T1) × H3+α(T1). Then the system admits a global solution in the same
class.
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