Gaussian Beams
Asymptotic Solutions concentrated on single ray paths

(4+) Valid approximations on any finite segment of a
ray path — single rays do not lead to caustics.

(=) Computational requirements barely more than
computing the ray itself.

(—) Most asymptotic solutions of interest are built
from many rays — need superpositions.

Typeset by ApS-TEX



Notation

Symbols: For a linear differential operator P(x, D)

P(z, D) / e f(£)de) = / e Ep(e, €) (€)de

defines p(x, &), the symbol of P(x, D). Grouping the
terms in p(x, &) by their orders of homogeneity in
one gets

p(il?,ﬁ) — pm(xag) +pm—1(x7£) T+ -|—p0(33',£),

where m is the order of P(x, D). pp,(x,&) is the prin-

cipal symbol. For example, the wave equation oper-
o2 2 :

ator 5= — c*(x,y,2)A, setting t = o and (z,y,2) =

(21,22, r3) = 2, has symbol

p(z,€) = =& + (2)|E']° = p2(2,6).

0 ) F=oF

8:,; — ('8?1, ces axn

— likewise for derivatives in &



The ANSATZ

(for solutions to P(z, D)u = 0 concentrated near x = z(s))

u(z, k) = e**@) (o (z) + %al(x) + - %lw ~N(z))

= %@ g (2, k)

Just like geometric optics — except that ¢(x(s)) is real,
and Im{¢p(x)} > 0 for = # x(s).

However, that changes a lot.

Note that |z|"e~*!2I® = O(k~"/2) on R™. The Hessian
of Im ¢ will be positive definite on z(s). So to make

P(z,D)u = O(k~")
it will suffice to make
—-'I,kng(:C Du— stfﬂf—x , 8+2M)

So we will be setting derivatives of exp(—k¢)P(x, D)u
equal to zero on x(s).



We assume that P(x, £) has a real principal symbol
p(z,§).

P(z,D)u = k™p(x, ¢z (x))u + O(K™ 1)

So we begin by making p(x, ¢, (x)) vanish to high
order on z(s).

The first three sets of equations, corresponding to
vanishing of orders zero, one and two are (using sum-
mation on like indices in products)

p=0 0)
Pz, + D¢, 0z,0, =0for 1 <i<n (1)

Px;xy +p$i§j¢xjxk; +p$k§j¢xjxi +p§j§1¢$g’$¢¢$zf£k
+p§7 ¢:cjxixk — 0 (2)

for 1 <1,k <n.
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Set ¢, (x(s)) = £(s). Then all the derivatives of p in
these equations are evaluated at (z(s),£(s)). Denote

df /ds by f.
Necessary step Require

z(s) = pe(x(s),£(s))-
Since differentiation with respect to s gives
Gzya; Tj = 33
the equation (1) is equivalent to

é — —px(:c,f)

Conclusion: p(z,¢,) vanishes to first order on z(s)
if (x(s),&(s)) is a null bicharacteristic for P(x, D).



What about the other equation?

It’s a lot simpler in matrix notation. Let
M(8) = (Puiz; (2(5))) s A(8) = (Paia, (2(5),€(5))) ,

B(s) = (Paig, (2(5),€(5))) , C(s) = (pese, (x(s),€(s)))
Then (2) becomes

A+ BM + MBt+ MCM + M =0

Matrix Riccati! M = NY ! will be solution when
(Y, N) is a matrix solution to the linear system

Y =CN + BY N = —-BN — AY
Key to the Construction:

As long as #(s) never vanishes, you can choose initial
data (Y (0), N(0)) so that Y (s) is invertible for all s.



Invariance: Writing ¥; = (y'(s),n'(s)) and 1)y =
(y?(s),m?(s)) for a pair of vector solutions of

y =Cn+ B'y n = —Bn — Ay,
the bilinear form
o(1,2) =y° -0t —y' 9P (3)

is constant in s. Since 1)y, where * denotes complex
conjugate, is also a solution of (3)

o(1,09) =7° 0t —yt -7

is also constant in s. This invariance leads to:
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Lemma: Choose the initial data (Y'(0), N(0)) =
(I, M(0)), where

i) M(0) = M(0)* and M (0)£(0) = £(0), and

(ii) Im M (0) is positive definite of the orthogonal com-
plement of £(0).

Then Y (s) is invertible for all s, and M(s) =
N(s)Y(s)~! satisfies M(s) = M(s)? and Im M(s) is
positive definite of the orthogonal complement of z(s)
for all s.

Conclusion: Since M (s) is the Hessian of ¢(x) at
z(s), we now have the gradient and Hessian of ¢ on
the ray.

Continuing to set derivatives of p(x, ¢(x)) equal to
zero on x(s) one determines the Taylor series of ¢ along
z(s) to all orders. However, the systems of equations
for the partial derivatives of order greater than two
are linear. Thus one can solve them for all s for any
initial data that satisfies equality of mixed partials and
is compatible with 0,¢(x(s)) = £(s). Thus — if we
work hard enough — we can make p(zx,d,¢(x)) vanish
to any desired order on z(s). [In applications so far
we’ve been happy with order 2.]
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Just as setting the coefficient of k™ in P(x, D)u to
zero leads to the eichonal equation in geometric op-
tics, the coefficients of lower powers of k correspond
to the transport equations. Since these equations are
linear, solving them to any order on z(s) presents no
problems. Note, however, that the we are limited by
the number of terms in the Taylor series of ¢ that we
have computed, since derivatives of ¢ appear in the
coefficients of the transport equations.

The simplest example of this construction is P =
02 — 92 — (95, the wave equation in two space dimen-
sions. For the bicharacteristic given by t(s), x(s),y(s)
= (s,0, s), for any positive constants a and b the phase

o(t,x,y) =

—t a’x?t a x> — t)?
AL i — W=7
2 1 + 4a-t 1+ 4a-t 2 2

and the amplitude

ag = (1 + 2iat)~1/?

give u = e*®q satisfying (Oy — A)u = O(k'/?) in k.
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Possible Extensions

a) Operators of the form
P(z,D;h) = Py(z,hD)+hP(z,hD)+h*P(z,hD)+---
To construct asymptotic solutions to P(x, D;h)u = 0

as h | 0 one can use the same Ansatz with k = 1/h.
For such operators the symbol p(z,&; h) is defined by

P(a, Dsh) [ e f(eydg = [ e p(w, € mF(€)dg
Note that for the operator above

where p; is the full symbol of P;(z, D). Examples here
(with P; =0 for j > 0

Schrédinger: shuy + h*Au — V(z)u =0 and

Helmholz: c¢?(z)Au + k*u = 0
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Quasimodes

When the curve v traced by (z(s),£(s)) is a stable
periodic orbit of the bicharacteristic flow, one can use
Gaussian beams to build sequences of functions u; and
corresponding sequences of numbers \; — oo such that
P(x,D)u; — \ju; = O()\Z_M). To do this assume that
p(x, ) = 1 on v, and use exactly the same Ansatz to
build beams which satisty

P(z,D)u= (™ +c k™t 4+ ... u.

The constants ¢y, co, ... are to be determined.]

Now
y =Cn+ B'y n = —Bn— Ay

has periodic coefficients. If S is the period (smallest
positive number such that (z(0),£(0)) = (z(5),&(95)),
one has the

Floquet Map & : (y(0),7(0)) = (y(5),n(5)).

® maps real vectors to real vectors and preserved the
(symplectic) form ¢. That implies that it has 1 as an
eigenvalue of multiplicity at least two, and its eigen-
values come in both conjugate and reciprocal pairs.
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Strong Stability: The eigenvalues of ® are
{]‘7 ]'7 6’1:91 3 e_iel, ceey 67:0”_1 , e_ien—l}

and the 6,’s and 7 are rationally independent.

Under this hypothesis one can use the eigenvectors
of ® to build M(0) with all the properties required
in the Lemma so that the resulting M (s) satisfies
M(0) = M(S). This can be done if the eigenvalues of
® are just simple except for 1 which is double, but one
needs rational independence to get periodic solutions
for the higher derivatives of ¢.

Construction of the amplitude a(z, k) — and the de-
termination of the ¢;’s —is a long story. For self-adjoint
P(x, D) one gets an amplitude for each multi-index
a such that a(x(S)) = exp(—ifB(a))a(z(0)), and in the
simplest case (“subprincipal symbol zero” )

1 1
B(a) = (a1 + 5)91 + -+ (p—1 + 5)9n—1m0d .
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Introducing the “action” around +, i.e.

S
6a(8)) = #(e0) = [ i(s)- b (a(s))ds

S
= / z(s) - &(s)ds = m.S,
0

the condition that determines the sequence of approx-
imate eigenvalues \; is just

kmS — 3 = 2xl or

2wl + B(a)
B mS

To leading order \; = k;. These formulas say that for
[ large quite a few eigenvalues of P are associated with
~ — assuming that the coefficients of P grow at infinity
so that the spectrum of P consists only of eigenval-
ues. Actually more is true: a positive fraction of all
the large eigenvalues of P are associated with v — see
Popov (2000).

k1





