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Numerical Studies

•Axisymmetric flow with swirl and 2D Boussinesq convection
-Grauer & Sideris (1991, 1995),Pumir & Siggia (1992)
Meiron & Shelley (1992), E & Shu (1994) 
Grauer et al (1998), Yin & Tang (2006)

• High symmetry flows
-Kida-Pelz flow: Kida (1985), Pelz & coworkers (1994,1997)
-Taylor-Green flow: Brachet & coworkers (1983,2005)

• Antiparallel vortex tubes
-Kerr (1993, 2005)
-Hou & Li (2006)

•Pauls et al(2006).: Study of complex space singularities for 
2D Euler in short time asymptotic regime



Axisymmetric flow with swirl

•Annular geometry

1 2 ,  0 2r r r z π< < < <
•Steady background flow 

(0, , )( )zu u rθ=u
chosen to satisfy Rayleigh’s criterion for instability
and an unstable eigenmode

•Caflisch (1993), Caflisch & Siegel (2004)
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Background flow

0Background flow is smoothed vortex sheet at 
(motivated by Caflisch, Li, Shelley 1991)
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 Pure swirling flow is unstable if
  (Rayleigh criterion)Γ > Γ
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Traveling wave solution

iConstruct complex, upper-analytic traveling wave solution

σiTraveling wave with speed  in Im(z) direction
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Baker, Caflisch & Siegel (1993)
Caflisch(1993), Caflisch & Siegel (2004)

1ˆ  is linearly unstable eigenmode with eigenvalue 
 Traveling wave speed  is thus determined from linear 

eigenvalue problem and is independent of the amplitude

σ
σ

ui
i



Motivation for traveling wave form

Construction of solution is greatly simplified
  
One way coupling among wavenumbers so
 mode  depends only o

-Degrees of freedom reduced

-Computational errors minimized since no truncation
n  
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Motivation (cont’d)

Singularities at   travel with speed 
 in Im z direction, reach real z line in finite time (for 0)
Singularities detected through asymptotics of

ˆ Fourier coefficients 
(Sulem, Sulem & Fris
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Perturbation construction of real singular solution

* *Consider  where ( )
 ,  ,   are exact solutions of Euler equations
  satisfies system of equations in which forcing 

  terms are quadratic, i.e.,
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 We want  ,  ( )  ( )

    

 Full construction requires analysis showing
that singularity
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•Similar approach used in studies of singularity
formation on vortex sheets
-Caflisch & Orellana (1989), Duchon & Robert (1988)
-Siegel, Caflisch, Howison (2004)
-Cordoba(2006)

•For vortex sheets, singularity formation is associated
with ill-posedness

•For Euler equations, traveling wave solution comes from 
balance between instability and nonlinearity 
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 Numerical construction in Caflisch (1993)
   was for 0
Singularity position depends on ,  i.e., Im  z= (r)
 Result: (  )  where 1/ 3
 Amplitude of  (i.e., ) is (1)
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  - vortex sheet strength
   A - 

 Vortex sheets in Boussinesq approximation
  Siegel (1992), (1995)
  

 Pure Boussinesq ( 1,  0)  traveling waves
  of O(1) amplitud

density difference
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 Pure vortex sh
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eet ( 0, 1)  no traveling waves
 due to conservation of vorticity on sheet
 For 1,  1 small amplitude  traveling waves

 0 as A 0.
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Numerical method

0 0  sin , cos
2 2

   0 1

-Instability co

 Pseudospectral in ,  4th order discretization  (in r) for 
 Background velocities

 

 Numerical method is accurate but unstable
nt   
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 Singularities detected through asymptotics 
  of Fourier components
  (Sulem, Sulem, Frisch 1983)
    

rolled using high-precision
    arithemetic (10 )
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Caflisch & Siegel (2004)
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Shift in time by  mult. of 

Fourier coeff. by  shift in imag.
component of sing. position by 
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1ˆAdjustable parameters: u , γθ





•Square root singularity does not satisfy
Beale, Kato, Majda theorem

sup  

Singularity formation at time T
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3D traveling wave

 Control numerical instability
 Look for traveling wave solution, periodic in ( , , ) 

ˆ exp (   )

( , , ),  ( , , )

 Simplify construction
  -Base flow 
  -Instability driven by f
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orcing term
ˆ      ( )= exp (   )

 Euler equations 
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 Small amplitude singularity by  choice
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forcing 
 Introduce  into forcing; when =0, solution 

  is entire.
 For small , singularity amplitude is O( )
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Numerical method

k
ˆ Nonlinear terms  N  evaluated by pseudospectral method

 No truncation error in restriction to finite 
 Since N is quadratic, padding with zeroes eliminates

  aliasing error from pseudospectral part
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 of calculation
 Extreme numerical instability eliminated; very mild

  instability controlled by spectral filtering 
i

We compute traveling wave  ,   is real+++ +++ −−−+u u ui
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Fit of singularity parameters (1,0,0), 1σ ε= =
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•BKM satisfied
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Singularity amplitude
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(1,0,0)=σIm ( , )x y zρ− =

Im x−

Singular surface

•Geometry of singular surface is useful for analysis







Conclusion

•Introduced new method to compute singular solutions to
3D Euler equations with complex velocity

•Eliminated numerical instability observed in earlier calculations;
introduced techniques to achieve small amplitude singularity

•Results suggest a traveling wave singularity to 3D 
complex Euler equations in which the velocity blows up;
satisifies Beale, Kato, Majda theorem, smooth singular surface

• Easily generalized to other problems,
e.g., 2D and 3D MHD, quasi-geostrophic equation, etc.


