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Abstract

Numerical methods for solving the continuum model of the dynamics of the molecular-

beam epitaxy (MBE) require very large time simulation, and therefore large time steps

become necessary. The main purpose of this work is to construct and analyze highly stable

time discretizations which allow much larger time step than that for a standard implicit-

explicit approach. To this end, an extra term, which is consistent with the order of the time

discretization, is added to stabilize the numerical schemes. Then the stability properties of

the resulting schemes are established rigorously. Numerical experiments are carried out to

support the theoretical claims. The proposed methods are also applied to simulate the MBE

models with large solution times. The power laws for the coarsening process are obtained

and are compared with previously published results.
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1 Introduction

There has been a significant research interest in the dynamics of the molecular beam epitaxy

(MBE) growth lately. The MBE technique is among the most refined methods for the growth of

think solid films and it is of great importance for applied studies, see, e.g., [1, 19]. The evolution

of the surface morphology during epitaxial growth results in a delicate relation between the

molecular flux and the relaxation of the surface profile through surface diffusion of adatoms. It

occurs on time scale and length scale that may span several orders of magnitude. Different kinds

of model have been used to describe such phenomena, which typically include: atomistic models,

continuum models and hybrid model. The atomistic models are usually implemented in the form

of molecular dynamics or kinetic Monte Carlo simulations [14, 8, 4]. The continuum models are

based on partial differential equations, and are appropriate mainly to investigate the temporal

evolution of the MBE instability at large time and length scales [21, 10]. The hybrid model,

introduced recently in [7, 3], can be considered as a compromise between atomistic models and

continuum models.

We are interested in the continuum models for the evolution of the molecular beam epitaxy

growth. Let h(x, t) be the epitaxy surface height with x ∈ R2 and t ≥ 0. Under typical con-

ditions for MBE growth, the height evolution equation can be written under mass conservation

form (see, e.g., [12]):

ht = −∇ · J(∇h)(1.1)

where J is the surface current which can be decomposed into a sum of two currents

J = JSD + JNE(1.2)

where JSD is the equilibrium surface current describing the surface diffusion and JNE is the

nonequilibrium diffusion current taking into account the Ehrlich-Schwoebel effect [5, 15]. The

surface diffusion current has the form:

JSD = δ∇(∆h)(1.3)

where δ is the surface diffusion constant. By using effective free energy formulation, the nonequi-

librium diffusion current can be written in the form

JNE(M) = −∂U(M)

∂M
,(1.4)

where M = (M1,M2) := ∇h is the slope vector, U(M) is the potential depending only on the

slope vector. Evidently, the term JNE helps the system (1.1) to evolve toward the states in

which the slope M attains the minimum of U(M) because that JNE vanishes at the minima

of U(M). The minima of this potential is the preferred value of the slope. Consequently, the

corresponding system is the so-called epitaxy growth model with slope selection.

The continuum model (1.1) has been extensively applied to modeling interfacial coarsening

dynamics in epitaxial growth with slope selection, see, e.g., [12, 21, 11]. In (1.1), the fourth-

order term models surface diffusion, and the nonlinear second-order term models the well known
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Ehrlich-Schowoebel effect [5, 15], which gives rise to instabilities in the evolution of the surface

morphology. The instability then leads to the formation of mounds and pyramids on the growing

surface. These pyramid-like structures have been reported in many experiments and numerical

simulations, see, e.g., [17, 20, 12]. It is found that the lateral width λ and the height w of these

pyramids grow in time as same power laws as power laws with the same component. Thus, the

ratio w/λ, corresponding to the pyramid slope, approaches a constant at large times. Therefore,

there is a slope selection in a typical MBE growth. The corresponding coarsening exponents

were found from experiments to depend on the symmetry of the surface. Two typical values of

the coarsening exponent have been found, namely 1
4

(see, e.g.,[17, 12]) and 1
3

(see, e.g., [20, 12]).

Some mathematical justification of such prediction was given in [9]. We also point out that the

continuum model (1.1)-(1.4) has been derived by Ortiz et al. [13] by using a series expansion of

the deposition flux in powers of the surface gradient. They also provided an explicit construction

for the pyramid-like coarsening, which allows to predict characteristic power law for the pyramid

size growth. However, it is difficult to provide growing details, especially for complex thin-film

systems.

Numerical simulations with the continuum models are appropriate for investigating the sur-

face growth instability at large times. The direct numerical simulation for (1.1)-(1.4) with

different nonequilibrium diffusion currents was performed by Siegert [16], who obtained a power

law close to 1
4
. Moldovan and Golubovic carried out a very comprehensive numerical simulations

by using a kinetic scaling theory and obtained an 1
3

power law. More recently, Li & Liu [11]

studied (1.1) using perturbation analysis and Galerkin spectral approximations.

The main purpose of this study is to provide efficient numerical schemes for solving (1.1),

with particular emphasis on the use of large time steps. To obtain meaningful results for power

laws, the integration times in simulations have to be very large (say, in the order of 104).

As a result, it is reasonable to employ larger time steps and small number of grid points in

computations, provided that stability and accuracy can be preserved. It is observed that most

of the existing continuum model simulations have used explicit integration method in time and

finite difference type approximation in space. To maintain the stability and to achieve high

approximation accuracy, the number of spatial grid points must be large and the time step has

to be small. Even with rapidly increasing computational resources, explicit schemes are still

limited to simulate early surface evolution and therefore small length scale [11].

The main objectives of this work are three folds: Firstly, we introduce an accurate and ef-

ficient semi-implicit Fourier pseudo-spectral method for solving the time-dependent nonlinear

diffusion equations (1.1). To approximate the time derivatives, a backward differentiation is

employed. More precisely, the fourth order term is treated implicitly to reduce the associated

stability constraints, while the nonlinear second-order terms are treated explicitly in order to

avoid solving the nonlinear equations at each time step. Secondly, a stabilization second or-

der term is added to the discretized system, which increases the time step dramatically. In

real applications, the surface diffusion constant δ may be very small after dimensional scaling.

Consequently, direct use of the standard semi-implicit method still suffers from severe stability

restriction on the time step. In order to overcome this difficulty, we introduce a stabilization term
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with constant coefficient A, which allows us to increase the time step significantly. Note that

similar technique has been used by Zhu et al. in the simulation of the Cahn-Hilliard equation

[22]. Our main contribution is to show rigourosly that the resulting numerical scheme is stable

if an appropriate constant A is chosen. Justification of this stabilization technique is provided

by considering several numerical tests. Finally, we perform some numerical simulations for the

interfacial coarsening dynamics using our proposed schemes. Our numerical results yield an 1
3

power law for the isotropic symmetry surface and 1
4

for the quadratic symmetry surface.

The organization of the paper is as follows. In Section 2, we construct highly stable semi-

implicit Fourier spectral methods for solving (1.1), which is of first order accuracy in time. To

improve the numerical stability, an O(∆t) term is added. Detailed stability analysis based on

the energy method is provided to show that the proposed methods allow large time step, and

therefore are useful for large time simulations. The second-order semi-implicit methods are

investigated in Section 3. It will be demonstrated that the stability analysis for higher order

time stepping methods is much more difficult. Numerical experiments for model problems are

presented in Section 4. Section 5 reports some computational results for the coarsening dynamics

using the numerical schemes allowing large time steps.

2 Semi-implicit time discretization: first order methods

To demonstrate the main ideas in scheme designing and stability analysis, we will use two model

equations in this work. The first one is of the from

ht = −δ∆2h −∇ · [(1 − |∇h|2)∇h], (x, t) ∈ Ω × (0, T ].(2.1)

The second model equation is of the form

ht = −δ∆2h − ((1 − |hx|2)hx)x − ((1 − |hy|2)hy)y, (x, t) ∈ Ω × (0, T ](2.2)

Hereafter, we use ht to denote ∂h
∂t

,∇h = (hx, hy). Both model problems are subject to the

periodic boundary conditions and suitable initial data, where Ω = (0, L)2 with L > 0. The

model (2.1) corresponds to the isotropic surface current, while (2.2) represents the simplest

quadratic surface current.

For the MBE simulations, large computational domain is necessary in order to minimize

the effect of periodicity assumption and to collect enough statistical information such as mean

surface height and width of the pyramid-like structures. Moreover, sufficiently long integration

time is necessary in order to detect the epitaxy growth behaviors and to reach the physical

scaling regime. On the other hand, to carry out numerical simulations with large time and large

computational domain, highly stable and accurate numerical methods are required. To this

end, it is natural to use the Fourier spectral approach in space which has been found extremely

efficient for periodic problems. As for stability issue, the implicit treatment for the fourth order

terms is employed, and more importantly, a special trick to handle the nonlinear second-order

terms is used. The goal is to significantly increase the allowed time-steps.
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We first consider the MBE model with the isotropic symmetry current, namely, the equation

(2.1). A classical first order semi-implicit scheme is of the form

hn+1 − hn

∆t
+ δ∆2hn+1 = −∇ ·

[
(1 − |∇hn|2)∇hn

]
], n ≥ 0.(2.3)

It is expected that the implicit treatment for the fourth order term in (2.3) allows to relax the

time-step restriction. However, numerical experiments demonstrate that larger time-step can

not be used for the scheme (2.3) when δ is small, see, e.g., [11]. To improve this, an O(∆t) term

is added into the scheme (2.3):

hn+1 − hn

∆t
+ δ∆2hn+1 − A∆hn+1 = −∇ ·

[
(1 − |∇hn|2 + A)∇hn

]
, n ≥ 0,(2.4)

where A is a positive constant to be determined later, hn ≡ hn(x) is an approximation of h(x, t)

at t = tn. The initial data h0 is given by the initial condition. The purpose for adding the

extra terms is to improve the stability condition so that larger time-steps can be used. This will

be justified theoretically in this section, and will be demonstrated by our numerical results in

Section 4.

In order to study its stability property, we will use a discrete energy estimate. To this end,

we first state the following known result.

Lemma 2.1 (Energy Identities, [11]) If h(x, t) is a solution of (2.1), then the following en-

ergy identities hold

d

dt
‖h‖2 + 4E(h) + ‖∇h‖4

L4 = |Ω|(2.5)

d

dt
E(h) + ‖ht‖2 = 0(2.6)

where ‖ · ‖ is the standard L2-norm in Ω, Lp is the standard Lp-norm, and

E(h) =

∫

Ω

[
1

4
(|∇h|2 − 1)2 +

δ

2
|∆h|2

]
dx.(2.7)

We briefly sketch the proof of (2.5) and (2.6), which is useful in deriving its discrete coun-

terparts. It follows from (2.1) that

〈ht, ϕ〉 = −
〈
∇ · [(1 − |∇h|2)∇h + δ∇∆h], ϕ

〉
,

where < ·, · > denotes the standard inner product in the L2 space. It can be verified directly

that setting ϕ = h gives (2.5) and setting ϕ = ht yields (2.6).

Theorem 2.1 If the constant A in (2.4) is sufficiently large, then the following energy inequality

holds

E(hn+1) ≤ E(hn),(2.8)
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where E is defined by (2.7) and hn is computed by (2.4). Moreover, if the numerical solution of

(2.4) is convergent, then A can be chosen to satisfy

A ≥ 3

2
|∇h|2 − 1

2
, a.e. in Ω × (0, T ],(2.9)

where h(x, t) is a solution of (2.1).

Proof.For any L-periodic H2(Ω) function ϕ, it follows from (2.4) that

1

∆t

〈
hn+1 − hn, ϕ

〉
+ δ

〈
∆hn+1,∆ϕ

〉
+ A

〈
∇(hn+1 − hn), ∇ϕ

〉
+ I(ϕ) = 0,(2.10)

where

I(ϕ) :=
〈
(|∇hn|2 − 1)∇hn, ∇ϕ

〉
.

Letting ϕ = δth
n := hn+1 − hn gives

1

∆t
‖δth

n‖2 + δ
〈
∆hn+1,∆δth

n
〉

+ A
〈
∇δth

n, ∇δth
n
〉

+ I(δth
n) = 0.(2.11)

Observe that

I(δth
n) =

〈
|∇hn|2 − 1,∇hn · ∇hn+1 − |∇hn|2

〉

=

〈
|∇hn|2 − 1,−1

2
|∇δth

n|2 +
1

2
|∇hn+1|2 − 1

2
|∇hn|2

〉

= −1

2

〈
|∇hn|2 − 1, |∇δth

n|2
〉

+
1

2

〈
|∇hn|2 · |∇hn+1|2, 1

〉

+
1

2

〈
−|∇hn|4 − 1

2
|∇hn+1|2 +

1

2
|∇hn|2, 1

〉
.

Using the identity 2a2b2 = −(a2 − b2)2 + a4 + b4 to the second last term above, we obatin

I(δth
n) =

〈
−1

2
(|∇hn|2 − 1) − 1

4
|∇hn+1 + ∇hn|2, |∇δth

n|2
〉

(2.12)

+
1

4

(
‖|∇hn+1|2 − 1‖2 − ‖|∇hn|2 − 1‖2

)
.

Combining (2.11) and (2.12) yields

1

∆t
‖δth

n‖2 + δ
〈
∆hn+1,∆δth

n
〉

+
1

4

(
‖|∇hn+1|2 − 1‖2 − ‖|∇hn|2 − 1‖2

)
(2.13)

+

〈
A − 1

2
(|∇hn|2 − 1) − 1

4
|∇hn+1 + ∇hn|2, |δth

n|2
〉

= 0.

Observe that

δ
〈
∆hn+1, ∆δth

n
〉

= δ
〈
∆hn+1,∆hn+1 − ∆hn

〉
(2.14)

≥ δ

2
‖∆hn+1‖2 − δ

2
‖∆hn‖2.
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Note that the last term in (2.13) can be made non-negative provided that

A ≥ max
x∈Ω

{
1

2
(|∇hn|2 − 1) +

1

4
|∇hn+1 + ∇hn|2

}
.(2.15)

Consequently, Theorem 2.1 follows from (2.13) and (2.14). 2

We now consider the MBE model with the quadratic symmetric surface (2.2). An energy

equality similar to that for the model (2.1) can be established.

Lemma 2.2 If h(x, t) is a solution of (2.2), then the following energy equalities hold:

d

dt
E2(h) + ‖ht‖2 = 0,(2.16)

d

dt
‖h‖2 + 4E2(h) + ‖hx‖4

L4 + ‖hy‖4
L4 = 2|Ω|.(2.17)

where

E2(h) =

∫

Ω

{
δ

2
|∆h|2 +

1

4

[
(h2

x − 1)2 + (h2
y − 1)2

]}
dx .(2.18)

Proof.The equation (2.2) is equivalent to

ht + δ∆2h = −∇ · J(2.19)

where J = (J1, J2) is given by

J1 =
(
1 − h2

x

)
hx , J2 = (1 − h2

y)hy .

Multiplying both sides of (2.19) with ht gives

‖ht‖2 + δ 〈∆h, (∆h)t〉 = 〈J, (∇h)t〉 .(2.20)

Observe

〈J, (∇h)t〉 =
〈
(1 − h2

x)hx, hxt

〉
+

〈
(1 − h2

y)hy, hyt

〉

= −1

4

d

dt

∫

Ω

[
(h2

x − 1)2 + (h2
y − 1)2

]
dx.

The above result and (2.20) yield (2.16). Similarly, the energy equality (2.17) can be derived by

multiplying (2.19) with h. 2

Similar to the scheme (2.4), a first-order scheme is constructed for the MBE model (2.2):

hn+1 − hn

∆t
+ δ∆2hn+1 − A∆hn+1(2.21)

= −A∆hn −
[
(1 − (hn

x)2)hn
x

]

x
−

[
(1 − (hn

y )2)hn
y

]

y
.
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Theorem 2.2 If A in (2.21) is chosen sufficiently large, then the following energy inequality

holds

E2(h
n+1) ≤ E2(h

n),(2.22)

where E2 is defined by (2.18) and hn is computed by (2.21). Moreover, if the numerical solution

of (2.21) is convergent, then A can be chosen to satisfy

A ≥ max
{3

2
h2

x − 1

2
,

3

2
h2

y −
1

2

}
, a.e. in Ω × (0, T ],(2.23)

where h(x, t) is the solution of (2.2).

Proof.The proof follows the same manner of that for Theorem 2.1. By direct computations,

we can obtain

1

∆t
‖δth

n‖2 + E2(h
n+1) − E2(h

n)

+

∫ [
A − 1

2

(
(hn

x)2 − 1
)
− 1

4
(hn+1

x + hn
x)2

]
(hn+1

x − hn
x)2 dx

+

∫ [
A − 1

2

(
(hn

y )2 − 1
)
− 1

4
(hn+1

y + hn
y )2

]
(hn+1

y − hn
y )2 dx = 0.

It follows from the above result that (2.22) holds provided that

A ≥ max
x∈Ω

{
1

2

(
(hn

x)2 − 1
)
− 1

4

(
hn+1

x + hn
x

)2
}

,

and

A ≥ max
x∈Ω

{
1

2

(
(hn

y )2 − 1
)
− 1

4

(
hn+1

y + hn
y

)2
}

.

If the numerical solution is convergent, then the above conditions become (2.23). 2

3 Semi-implicit time discretization: higher order methods

3.1 Second-order scheme: BD2/EP2

By combining a second order backward differentiation (BD2) for the time derivative term and

a second order extrapolation (EP2) for the explicit treatment of the nonlinear term, we arrive

at a second-order scheme (BD2/EP2) for Eq. (2.1):

3hn+1 − 4hn + hn−1

2∆t
+ δ∆2hn+1 − A∆hn+1

= −2A∆hn + A∆hn−1 −∇ · [(1 − |∇(2hn − hn−1)|2)∇(2hn − hn−1)], ∀n ≥ 1.

(3.1)

As usual, to start the iteration h0(x) is given by the initial condition and h1(x) is computed by

the first order scheme (2.4).
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Theorem 3.1 If the constant A in (3.1) is sufficiently large, then the following energy inequality

holds

Ẽn+1 ≤ Ẽn + O(∆t2)(3.2)

where Ẽn is defined by

Ẽn =
1

∆t
‖hn − hn−1‖2 +

1

4

∥∥∥|∇hn|2 − 1
∥∥∥
2

+
δ

2
‖∆hn‖2 +

A

2
‖∇(hn − hn−1)‖2.(3.3)

In particular, we can obtain

E(hn) ≤ E(h1) + O(∆t)(3.4)

where E is defined by (2.7). Moreover, if the numerical solution of (3.1) is convergent, then A

can be chosen to satisfy

A ≥ 3|∇h|2 − 1, a.e. in Ω × (0, T ],(3.5)

where h(x, t) is a solution of (2.1).

Proof: For ease of notation, let δth
n = hn+1−hn and δtth

n = hn+1−2hn+hn−1. Multiplying

both sides of (3.1) by δth
n and integrating the resulting equation in Ω give

In
1 + In

2 + In
3 = In

4(3.6)

where

In
1 :=

1

2∆t
〈3δth

n − δth
n−1 , δth

n〉,

In
2 := δ〈∆2hn+1 , δth

n〉, In
3 := −A 〈∆δtth

n , δth
n〉 ,

In
4 := −

〈
∇ · [(1 − |∇(2hn − hn−1)|2)∇(2hn − hn−1)] , δth

n
〉

.

We now estimate them term by term. The estimate for the first three terms is straight forward:

In
1 ≥ 1

∆t
‖δth

n‖2 − 1

∆t
‖δth

n−1‖2,(3.7)

In
2 = δ

〈
∆hn+1 , ∆hn+1 − ∆hn

〉
≥ δ

2
‖∆hn+1‖2 − δ

2
‖∆hn‖2,(3.8)

In
3 = A 〈δtt∇hn , δt∇hn〉 = A

〈
δt∇hn − δt∇hn−1 , δt∇hn

〉
(3.9)

=
A

2
‖δt∇hn‖2 − A

2
‖δt∇hn−1‖2 +

A

2
‖δtt∇hn‖2.

To estimate In
4 , we need the following two identities. On one hand, we have

∇(2hn − hn−1) · ∇(hn+1 − hn)(3.10)

= ∇(2hn − hn−1) · ∇hn+1 −∇(2hn − hn−1) · ∇hn

= −1

2
|δtt∇hn|2 +

1

2
|∇(2hn − hn−1)|2 +

1

2
|∇hn+1|2 −∇(2hn − hn−1) · ∇hn,
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and on the other hand,

∇(2hn − hn−1) · ∇(hn+1 − hn) = ∇hn · ∇(hn+1 − hn) + δt∇hn · δt∇hn−1(3.11)

=
1

2
|∇hn+1|2 − 1

2
|∇hn|2 − 1

2
|δt∇hn|2 − 1

2
|δtt∇hn|2 +

1

2
|δt∇hn|2 +

1

2
|δt∇hn−1|2

=
1

2
|∇hn+1|2 − 1

2
|∇hn|2 − 1

2
|δtt∇hn|2 +

1

2
|δt∇hn−1|2.

Using (3.10) gives

〈
−|∇(2hn − hn−1)|2∇(2hn − hn−1) , ∇(hn+1 − hn)

〉
(3.12)

=
1

2

〈
|∇(2hn − hn−1)|2 , |δtt∇hn|2

〉
+ Jn

4 ,

where

Jn
4 :=

〈
−|∇(2hn − hn−1)|2 ,

1

2
|∇(2hn − hn−1)|2 +

1

2
|∇hn+1|2 −∇(2hn − hn−1) · ∇hn

〉

=
1

2

〈
1, −|∇(2hn − hn−1)|4

〉
+

1

2

〈
−|∇(2hn − hn−1)|2 , |∇hn+1|2

〉

+
〈
|∇(2hn − hn−1)|2 , ∇(2hn − hn−1) · ∇hn

〉

= −3

4

〈
1, |∇(2hn − hn−1)|4

〉
+

1

4
‖|∇(2hn − hn−1)|2 − |∇hn+1|2‖2

−1

4

〈
1, |∇hn+1|4

〉
+

〈
|∇(2hn − hn−1)|2 , ∇(2hn − hn−1) · ∇hn

〉
.

Using the Schwarz inequality to the last term above gives

〈
|∇(2hn − hn−1)|2 , ∇(2hn − hn−1) · ∇hn

〉

≤ 1

2

〈
|∇(2hn − hn−1)|2 , |∇(2hn − hn−1)|2

〉
+

1

2

〈
|∇(2hn − hn−1)|2 , |∇hn|2

〉

≤ 1

2

〈
1, |∇(2hn − hn−1)|4

〉
+

1

4

〈
1, |∇(2hn − hn−1)|4

〉
+

1

4

〈
1, |∇hn|4

〉

=
3

4

〈
1, |∇(2hn − hn−1)|4

〉
+

1

4

〈
1, |∇hn|4

〉
.

Combining the above two results gives

Jn
4 ≤ 1

4
‖|∇(2hn − hn−1)|2 − |∇hn+1|2‖2 − 1

4

〈
1, |∇hn+1|4

〉
+

1

4

〈
1, |∇hn|4

〉

=
1

4

〈
|∇(hn+1 + 2hn − hn−1)|2 , |δtt∇hn|2

〉
− 1

4

〈
1, |∇hn+1|4

〉
+

1

4

〈
1, |∇hn|4

〉
.(3.13)

Using the definition of In
4 , together with (3.11), (3.12) and (3.13), we have

In
4 =

〈
(1 − |∇(2hn − hn−1)|2)∇(2hn − hn−1) , ∇(hn+1 − hn)

〉

=
1

2
‖∇hn+1‖2 − 1

2
‖∇hn‖2 − 1

2
‖δtt∇hn‖2 +

1

2
‖δt∇hn−1‖2

+
1

2

〈
|∇(2hn − hn−1)|2 , |δtt∇hn|2

〉
+ Jn

4

10



≤ −1

2

〈
1 − |∇(2hn − hn−1)|2 , |δtt∇hn|2

〉
+

1

2
‖∇hn+1‖2 − 1

2
‖∇hn‖2 +

1

2
‖δt∇hn−1‖2

+
1

4

〈
|∇(hn+1 + 2hn − hn−1)|2 , |δtt∇hn|2

〉
− 1

4

〈
1, |∇hn+1|4

〉
+

1

4

〈
1, |∇hn|4

〉

=

〈
1

2
|∇(2hn − hn−1)|2 − 1

2
+

1

4
|∇(hn+1 + 2hn − hn−1)|2 , |δtt∇hn|2

〉

−1

4
‖|∇hn+1|2 − 1‖2 +

1

4
‖|∇hn|2 − 1‖2 +

1

2
‖δt∇hn−1‖2.

The above result, together with (3.6) and (3.7)–(3.9), yields

Ẽn+1 ≤ Ẽn +
1

2
‖δt∇hn−1‖2

+

〈
−A

2
+

1

2
|∇(2hn − hn−1)|2 − 1

2
+

1

4
|∇(hn+1 + 2hn − hn−1)|2 , |δtt∇hn|2

〉

The last term above can be made non-positive provided that

A ≥ |∇(2hn − hn−1)|2 − 1 +
1

2
|∇(hn+1 + 2hn − hn−1)|2, a.e. in Ω.

Using the fact that

‖δt∇hn−1‖2 = ∆t2‖∇(hn − hn−1)/∆t‖2 = O(∆t2),

we obtain (3.2). Summing (3.2) over n gives Ẽn ≤ Ẽ1 + O(∆t). In particular, by using the

definition of Ẽ and the energy E defined by (2.7), we have

E(hn) ≤ E(h1) + O(1)∆t

where the O(1) term is given by

O(1) = ‖(h1 − h0)/∆t‖2 +
A

2
∆t‖∇(h1 − h0)/∆t‖2

+
n−1∑

i=1

∆t‖∇(hi − hi−1)/∆t‖2.

This completes the proof of this theorem. 2

Remark 3.1 By comparing (2.9) and (3.5), we notice that the constant A used for the second-

order scheme is two times larger than that for the 1st order scheme.

Similarly, a second order scheme of the BD2/EP2-type can be constructed for the quadratic

symmetry current model (2.2):

3hn+1 − 4hn + hn−1

2∆t
+ δ∆2hn+1 − A∆hn+1(3.14)

= −2A∆hn + A∆hn−1 −
[(

1 − (2hn
x − hn−1

x )2
)

(2hn
x − hn−1

x )
]

x

−
[(

1 − (2hn
y − hn−1

y )2
)

(2hn
y − hn−1

y )
]

y
.

Then a similar analysis as in Theorem 3.1 can be carried out to obtain a stability result. The

details will be omitted here.
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3.2 Third-order scheme: BD3/EP3

A third order scheme for solving the MBE model of general form (1.1) can be constructed in a

similar manner as used in the last subsection. Specifically, we can obtain the BD3/EP3 scheme

in the following form:

11hn+1 − 18hn + 9hn−1 − 2hn−2

6∆t
+ δ∆2hn+1 − A∆hn+1

= −A∆(3hn − 3hn−1 + hn−2) −∇ · J(∇(3hn − 3hn−1 + hn−2)), ∀n ≥ 2

(3.15)

where, in order to start the iteration, h1, h2 are calculated via a first and second order scheme

respectively.

The stability analysis of the scheme (3.15) requires some very detail energy estimates and

will not be presented here. The numerical results obtained in the next two sections indicate

that the third order time discretization of type (3.15) is also stable as long as the constant A is

sufficiently large.

4 Numerical experiments: stability and accuracy tests

A complete numerical algorithm also requires a discretization strategy in space. Since Fourier

spectral method is one of the most suitable spatial approximation methods for periodic problems

[2, 6, 18], it will be employed to handle the spatial discretizaton. To demonstrate the principal

ideas, we consider the full discretization for the MBE model with the isotropic current using the

first-order time stepping method, namely, we will only consider the full discretizaton for (2.4).

It is to find an approximate solution hn
K(x) in form of a truncated Fourier expansion:

hn
K(x) =

K∑

k1,k2=−K

ĥn
k exp(−ikx),

where k = (k1, k2), K is a positive integer. The above expansion is required to satisfy the

following weak formulation:

1

∆t

〈
hn+1

K − hn
K , ϕ

〉
+ δ

〈
∆hn+1

K ,∆ϕ
〉

+ A
〈
∇hn+1

K ,∇ϕ
〉

(4.1)

=
〈
(1 − |∇hn

K |2 + A)∇hn
K ,∇ϕ

〉
, ∀ϕ ∈ SK

where

SK = span{exp(−ikx), −K ≤ k1, k2 ≤ K}.

For the full discretization problem (4.1), an energy inequality similar to that of Theorem 2.1

can be derived (its proof will be omitted here).

Theorem 4.1 Consider the numerical scheme (4.1). If

A ≥ max
x∈Ω

{
1

2
(|∇hn

K |2 − 1) +
1

4
|∇hn+1

K + ∇hn
K |2

}
,(4.2)

12



then the solution of (4.1) satisfies

E(hn+1
K ) ≤ E(hn

K), ∀n ≥ 0(4.3)

where the energy E is defined by (2.7). Moreover, if the numerical solution of (4.1) is convergent,

then A can be chosen to satisfy

A ≥ 3

2
|∇h|2 − 1

2
, a.e. in Ω × (0, T ],(4.4)

where h(x, t) is a solution of (2.1).

By applying the Fourier transformation to Eq. (2.4), we obtain a set of ordinary differential

equations for each mode k in the Fourier space,

ĥn+1
k

− ĥn
k

∆t
+ δ|k|4ĥn+1

k
+ A|k|2ĥn+1

k
= −ik

{
(1 − |∇hn

K |2 + A)∇hn
K

}

k
(4.5)

where |k| =
√

k2
1 + k2

2 is the magnitude of k, and {f}k represents the kth-mode Fourier coef-

ficient of the function f . The Fourier coefficients of the nonlinear term (1 − |∇hn
K |2 + A)∇hn

K

are calculated by performing the discrete fast Fourier transform. It is readily seen that for a

given level n the evaluation of all
{
(1 − |∇hn

K |2 + A)∇hn
K

}
k

requires 8N one dimensional FFT

with vector length N = 2K. This is also the total cost to compute ĥn+1
k

from (4.5). In practical

calculation, we work on the spectral space. At the final time level, an additional FFT is needed

to recover the physical nodal values hn+1
K (x) from ĥn+1

k
,−K ≤ k1, k2 ≤ K.

The purpose of this section is to verify the stability of the proposed numerical schemes in

terms of the choice of the constant A. More serious applications will be reported in the next

section.

Example 4.1 Consider an isotropic symmetry current model (2.1):




ht = −δ∆2h −∇ · [(1 − |∇h|2)∇h], [0, 2π]2 × (0, T ]

h(·, t) is 2π − periodic, ∀t ∈ (0, T ],

h(x, 0) = h0(x) ∀x ∈ [0, 2π]2
(4.6)

with δ = 0.1, 0.01, 0.001 and

h0(x) = 0.1(sin 3x sin 2y + sin 5x sin 5y).(4.7)

This problem was used by Li & Liu [11] to study the most unstable modes. It was proven

that with the initial condition (4.7) the most unstable modes are those with wavevectors k such

that |k| =
√

5. Numerically, they showed that after short interaction of the unstable modes, the

solution converges to a steady-state which consists mainly of one mode only.

Define ∆tc as the largest possible time which allows stable numerical computation. In other

words, if the time step is greater than ∆tc then the numerical solution will blow up. In Table 1,

we list the values of ∆tc for the schemes (2.4), (3.1) and (3.15) with different choices of A. All

these semi-discrete schemes are approximated by the Fourier spectral methods in space. The

Fourier mode number used in the calculations is K = 128. Several observations are made from

Table 1:
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Table 1: Example 4.1: stability comparison with different A and δ. Here BDr stands for r-th

order backward differentiation and EPr for r-th order extrapolation.

δ A BD1/EP1 BD2/EP2 BD3/EP3

A = 0 ∆tc ≈ 1 ∆tc < 0.3 ∆tc < 0.1

0.1 A = 1 ∆tc ≈ 1 ∆tc ≈ 1 ∆tc ≈ 0.5

A = 2 ∆tc ≈ 1 ∆tc ≈ 1 0.2 ≤ ∆tc < 0.5

A = 0 ∆tc < 0.1 ∆tc < 0.01 ∆tc < 0.002

0.01 A = 1 ∆tc ≈ 1 ∆tc ≈ 0.1 ∆tc ≈ 0.002

A = 2 ∆tc ≈ 1 ∆tc ≈ 1 ∆tc ≈ 0.05

A = 0 ∆tc < 0.01 ∆tc < 0.001 ∆tc < 10−4

0.001 A = 1 ∆tc ≈ 1 ∆tc ≈ 0.005 0.0005 ≤ ∆tc < 10−3

A = 2 ∆tc ≈ 1 ∆tc ≈ 1 ∆tc ≈ 0.005

Table 2: Example 4.1: accuracy with different choices of A. δ = 0.01

A ∆t BD1/EP1 BD2/EP2 BD3/EP3

∆t = 0.01 0.72E-03 unstable unstable

A = 0
∆t = 0.005 0.36E-03 0.24E-04 unstable

∆t = 0.0025 0.18E-03 0.61E-05 unstable

∆t = 0.00125 0.90E-04 0.16E-05 unstable

∆t = 0.01 0.22E-02 0.21E-03 unstable

A = 1
∆t = 0.005 0.11E-02 0.56E-04 unstable

∆t = 0.0025 0.51E-03 0.14E-04 unstable

∆t = 0.00125 0.25E-03 0.37E-05 0.43E-06

∆t = 0.01 0.43E-02 0.32E-03 0.22E-03

A = 2
∆t = 0.005 0.19E-02 0.87E-04 0.21E-04

∆t = 0.0025 0.88E-03 0.23E-04 0.30E-05

∆t = 0.00125 0.43E-03 0.58E-05 0.53E-06

• If A = 0, i.e., if a conventional implicit-explicit approach is used, then the numerical

methods suffer from extremely small time steps, in particular when higher-order schemes

are used or δ � 1;

• The improvement on stability with the use of the constant A is significant. When A is

sufficiently large (in this case A ≥ 2), quite large time step (in this case ∆t ≥ 1) can be

used for first- and second-order time discretizations;

• The choice of A depends on the order of time discretization. For the third-order methods,

quite small time step has to be used, which is unpractical for large time simulations.
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Figure 1: Isolines of the solution at t = 1 for δ = 0.01.

We now turn to time accuracy comparison. Since the exact solution for problem (4.6) is

unknown, we use numerical results of BD3/EP3 with ∆t = 0.0001 and K = 128 as the “exact”

solution. The coefficient δ is set to be 0.01 and the numerical errors are computed at t = 1. In

this case, the “exact” solution obtained by using BD3/EP3 is plotted in Figure 1. Table 2 shows

the L2-errors using several values of A and four time steps. It is seen that once the methods are

stable, the expected order of convergence (in time) is obtained.

5 Numerical experiments: coarsening dynamics

In this section, we present the numerical results by simulating the MBE model (1.1) in both

cases of isotropic surface (2.1) and quadratic surface (2.2). The simulations are carried out in

the domain Ω = (0, 1000)2 , where double periodic boundary conditions are used in the spatial

directions. The initial condition is a random state by assigning a random number varying from

-0.001 to 0.001 to each grid point. The second order schemes, i.e. (3.1) for the isotropic surface

model and (3.14) for the quadratic surface model, are used in our simulations. The spatial

discretization is based on a Fourier pseudospectral approximation with K denoting the Fourier

mode number. In order to investigate the effect of the time and space resolution, different values

of ∆t and K have been tested.

15



Figure 2: The isotropic symmetry surfaces problem: the contour plot at t = 40, 000, obtained by using K = 512

and ∆t = 1.

Figure 3: Same as Fig. 2, except at t = 80, 000.
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Figure 4: The isotropic symmetry surfaces problem: growth power law obtained by using K = 512 and ∆t = 1

(log to log scale).
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Figure 5: Same as Fig. 4 except with K = 256 and ∆t = 0.5.
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5.1 Growth on the isotropic symmetry surfaces

First we carry out the simulation of the growth process for the case of isotropic surfaces. In

Figs. 2 and 3, the isolines of the free energy Ffree(x, t) at t = 40, 000 and 80, 000 are plotted

respectively with (K,∆t) = (512, 1) and A = 1, where Ffree(x, t) is defined by

Ffree =
1

4
(|∇h|2 − 1)2 +

δ

2
|∆h|2.

The contourlines of Ffree are usually used to identify the edges of the pyramidal structures

since the free energy is concentrated on the edges. In these two figures the temporal evolution

of the morphology of the growing surface is well visualized. It is seen that the edges of the

pyramids (white areas) form a random network over the surface, which separate the facets of

the pyramids. The pyramids grow in time via a coarsening process, as it is evident from Fig.

2 and Fig. 3. Also shown is the randomness of the orientation of the pyramid edges, resulting

from the isotropic nature of the surface symmetry. This result is in good agreement with the

published results, see, e.g., [12].

Fig. 4 presents the power laws of the growing of the mean height h̄(t) and width λ(t) of the

pyramidal structures, where h̄(t) is the mean of h(t),

h̄(t) =

(
1

|Ω|

∫

Ω

h2(x, t)dx

) 1

2

,

and λ(t) measures the mean size of the network cell (which is the width of the pyramid edges),

calculated as in [12] from the height-height correlation function

Khh(r, t) =

∫

Ω

h(x + r, t)h(x, t)dx

where r is a positive vector. In our calculations, we used a simpler form r = (r, r)T . With

r = (r, r)T , Khh(r, t) can be considered as a function of r for fixed t, and shows an oscillatory

character reflecting presence of mound structures. For a given t, the mean pyramid width λ(t)

is defined as r0(t), which is the first zero crossing of Khh(r, t),

r0(t) = inf{r > 0,Khh(r, t) = 0}.

We see from Fig. 4 that both vertical height and lateral width of the pyramids grow in time as

power law ctn with exponents n close to 1
3

(slope of the lines), which is again in good agreement

with the existing experimental and numerical results.

In order to check the temporal and spatial resolution, we display in Fig. 5 the result obtained

by using (K,∆t) = (256, 0.5), i.e., halving the values of K and ∆t. It is observed from Fig. 4

and Fig. 5 that there is no significant difference between the results obtained by using the two

sets of parameters.

5.2 Growth on the quadratic symmetry surfaces

Here we present simulation results obtained by solving the MBE model (2.2). The time disc-

tretization used in the simulation is the second-order scheme (3.14), space discretization is the
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Figure 6: The quadratic symmetry surface problem: the contour plot at t = 40, 000, obtained by using K = 384

and ∆t = 0.2.

Figure 7: Same as Fig. 6, except at t = 80, 000.
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Figure 8: The quadratic symmetry surface problem: growth power law obtained by using K = 384 and ∆t = 0.2.

same as in the isotropic case, but here with Fourier mode number K = 384 and time step

∆t = 0.2.

In Figs. 6 and 7, we plot the contourlines of the free energy function F ′
free corresponding to

the quadratic symmetry model,

F ′
free =

δ

2
|∆h|2 +

1

4

[
(h2

x − 1)2 + (h2
y − 1)2

]
.

As in the case of the isotropic surfaces, pyramid-like structures are growing in the surface with

sharp edges carrying most of energy, identified by the network formed by the white areas.

However in contrast to the isotropic case, the pyramid edges are well oriented toward the four

preferred directions reflecting the quadratic symmetry. A careful look at the two figures finds

that the well known dislocation feature is also presented, as reported by many experiments

and simulations. Moreover, it is observed from Fig. 8 that the power law obtained for the

pyramid growth with the quadratic symmetry is close to 1

4
. This is in a good agreement with

the numerical predictions of Siegert [16] and Moldovan & Golubovic [12].
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