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We derive and interpret solutions of time-harmonic Maxwell’s equations with a verti-

cal and a horizontal electric dipole near a planar, thin conducting film, e.g. graphene

sheet, lying between two unbounded isotropic and non-magnetic media. Exact ex-

pressions for all field components are extracted in terms of rapidly convergent series

of known transcendental functions when the ambient media have equal permittivities

and both the dipole and observation point lie on the plane of the film. These solu-

tions are simplified for all distances from the source when the film surface resistivity

is large in magnitude compared to the intrinsic impedance of the ambient space. The

formulas reveal the analytical structure of two types of waves that can possibly be

excited by the dipoles and propagate on the film. One of these waves is intimately

related to the surface plasmon-polariton of transverse-magnetic (TM) polarization of

plane waves.
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I. INTRODUCTION

In the last decade, rapid advances have been made in the design and fabrication of

two-dimensional materials1 which can be used to manipulate light at small scales.2 The

highly active field of plasmonics focuses on the interaction of electromagnetic radiation at

the mid- and near-infrared spectrum with the collective motion of electrons in conducting

interfaces and nanostructures.3 A goal is to generate electromagnetic waves that propagate

with relatively small energy loss close to the interface between a conducting material, e.g.

graphene, and a dielectric.4–9 In plasmonics such lateral waves should decay fast enough away

from the interface; while, on the other hand, they should attenuate slowly enough in the

direction of propagation along the interface. A wave that has attracted much attention in

this context is the surface plasmon-polariton,3,10,11 with a variety of reported applications12,13

including invisibility cloaking,14 photovoltaics15 and nanolithography.16

Most recently, direct experimental evidence was provided for generating surface plasmons

by placing a receiving resonant antenna near a graphene sheet.17 Motivated by this advance,

our goal with this paper is to analytically study the generation of surface plasmons by

current-carrying sources via a solvable model for a fundamental setting. To this end, we for-

mulate and solve exactly boundary value problems for the time-harmonic Maxwell equations

in the presence of vertical and horizontal electric (Hertzian) dipoles near an isotropic and ho-

mogeneous conducting sheet between two isotropic and non-magnetic unbounded media.3,6

The underlying theme, wave propagation near boundaries, has been the subject of impor-

tant studies for over a century;18–26 see particularly the systematic and extensive treatment

of Ref. 26. In these works, approximation techniques are developed for radiowave propa-

gation; these have offered valuable insights into the lateral electromagnetic waves traveling

near the boundaries between media of very different indices of refraction.26 In the frequency

band of plasmonics,2 however, additional considerations have emerged because of properties

of novel two-dimensional materials used in microscale applications. For instance, a thin layer

of graphene has a complex surface conductivity, with a positive or negative imaginary part

depending on frequency and doping, and introduces a jump in the tangential component

of the magnetic field across the interface. The analytical consequences of this discontinuity

are largely unexplored.7,8,27 This view suggests that the associated lateral electromagnetic

waves be studied in detail in the near- and mid-infrared spectrum.
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In this paper we analytically address aspects of the following question. What is the

structure of the waves generated by dipole sources on a thin conducting film? Our goal is

to single out fundamental attributes of the field which are intimately related to the film by

analyzing a minimal solvable model. Our tasks can be summarized as follows.

• We explicitly represent all field components in terms of one-dimensional Fourier-Bessel

(Sommerfeld-type) integrals, in the spirit of Ref. 26. Our derivations, focusing on the

electromagnetic field itself, differ from the use of the (non-physical) Hertzian potential

invoked, e.g. in Ref. 7, by which the field components are derived via successive

differentiations.

• By a generalized Schwinger-Feynman representation for a class of integrals,30 we com-

pute all field components via fast convergent series of known functions such as the

Fresnel integrals, when both the dipole and observation point lie on the plane of the

film and the ambient media have equal permittivities. Our model is thus simplified,

yet without obscuring the goal to analytically understand the role of the interface.

• In accord with applications in plasmonics,6 we further simplify the exact solutions

when the surface resistivity (inverse of conductivity) of the thin layer is much larger in

magnitude than the intrinsic impedance of the ambient space. Then, a few terms are

retained in the series expansions for the fields yielding simple approximate formulas

for all distances from the source.

Our approach is based on systematically solving Maxwell’s equations in the spirit of

Refs. 26 and 30. Thus, we avoid any a-priori plane-wave approximations. We recognize

a specific type of lateral wave as intimately related to the surface plasmon-polariton of

transverse-magnetic (TM) polarization of plane waves3,11 via the contribution of a certain

pole in the complex plane of the dual (Fourier) variable; see also the treatments of Refs. 7,

8, and 27. For a horizontal dipole on a thin film in free space, when contributions related

to TM polarization in principle may co-exist with contributions of transverse-electric (TE)

polarization, our analysis reveals that the TM surface plasmon-polariton, when present, is

accompanied by a wave expressed by Fresnel integrals.26

The analysis presented here, with focus on explicit, physically transparent expressions

for the electromagnetic field in terms of known functions, differs in methodology from pre-
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vious studies of waves in similar settings.7,8,11,27 For example, in Ref. 11, the authors review

dispersion relations for plane waves in plasmonics for a variety of experimentally relevant

geometries, without discussing effects of point sources. In Ref. 7, exact integrals are formu-

lated for the Hertzian potential produced by dipoles in the presence of a graphene sheet;

the electromagnetic field is then computed by numerical evaluation of integrals. In Ref. 8,

a similar task is carried out more extensively, with numerical evidence that the surface

plasmon-polariton of TM polarization, recognized as a discrete spectral contribution, may

dominate wave propagation under certain conditions on the surface conductivity. In Ref. 27,

the authors numerically describe the field produced by dipoles near a graphene sheet, dis-

tinguishing a “core region”, where the electric field can be much larger than its values in

free space, from an “outer region”, where the field approaches its values in free space.

Our work expands previous numerical approaches7,8,27 in the following sense. By focusing

on a simple yet nontrivial model with a conducting thin film, we are able to derive closed-

form expressions which explicitly separate the primary field of the dipole, produced in the

absence of the layer, from the scattered field which is sensitive to the film conductivity, for

all distances from the point source. This approach singles out analytic aspects of the wave

produced by the point source that are intimately connected to the surface conductivity of

the film, thus showing how the surface plasmon related to TM polarization can dominate

propagation in cases of physical and practical interest. Our analysis lacks generality, since

we restrict attention to the case where the source and the observation point both lie on the

plane of the thin film; nonetheless, we view our treatment as a step necessary for tackling

the problem of radiation by a realistic current-carrying source (rather than an incident plane

wave) placed on the material surface.17 The character of the wave produced by the source

of course becomes important at short distances or high enough frequencies. Our work aims

at illuminating the complicated structure of the field in a simple nontrivial setting.

The present work illustrates analytic aspects of the tensor (or, dyadic) Green function

for the geometry of a thin conducting film at fixed frequency. Naturally, the response to

any imposed current-carrying source can then be derived by superposition. This task lies

beyond our present scope. Furthermore, we do not pursue numerical computations of the

fields. The explicit computation by asymptotic methods26 of field components when the

observation point or the dipole is away from the layer is left for future work.

The remainder of this paper is organized as follows. In Section II, we describe the bound-
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ary value problem for Maxwell’s equations. Section III focuses on the derivation of Fourier-

Bessel representations, known as the Hankel transform,28 for the electromagnetic field. In

Section IV, we evaluate exactly the requisite integrals when the dipole and the observation

point are on the film, which is placed in a homogeneous space. Section V discusses the field

resulting from our computations for distances from the source that are comparable to the

wavelength in free space. Section VI concludes our paper with an outline of open problems.

Notation and terminology. The e−iωt time dependence is assumed throughout, where

ω is the angular frequency. R is the set of reals, Z is the set of integers, and boldface

symbols denote vectors in R3. We write f = O(g) (f = o(g)) to mean that |f/g| is bounded

by a nonzero constant (approaches zero) in a prescribed limit. f ∼ g implies f − g = o(g)

in a prescribed limit. <w (=w) denotes the real (imaginary) part of complex w. The term

“sheet” has a two-fold meaning as either a material thin film or, as a “Riemann sheet”, a

particular branch of a multiple-value function of a complex variable; and the terms “top

Riemann sheet” and “first Riemann sheet” are used interchangeably. We use the terms “TM

polarization” and “TE polarization” in the context of waves produced by dipoles to indicate

the presence of certain denominators, denoted by P and Q in the main text, respectively,

in the Fourier representations of the corresponding fields; each denominator appears in the

reflection coefficient for the TM- or TE-polarized plane wave incident upon the thin film.

The terms “surface plasmon-polariton”3 and “surface plasmon” are used interchangeably.

II. BOUNDARY VALUE PROBLEM

In this section, we formulate the boundary value problem for Maxwell’s equations. The

current density of the vertical unit electric dipole, shown in Fig. 1, is

J(x, y, z) = Jv(x, y, z) = ez δr0 , r0 = (0, 0, a) , (1)

where a is the distance of the dipole from the layer, a > 0, ez is the unit vector along the

z-axis, and δr denotes the Dirac mass at point r. For the horizontal unit electric dipole,

shown in Fig. 2, the current density reads

J(x, y, z) = Jh(x, y, z) = ex δr0 . (2)

The film has infinitesimal thickness and scalar surface conductivity σ, which is in principle

complex and ω-dependent.7 The film lies in the plane z = 0 which separates region 1, the

5



x	  

y	  

z	  

O	  

a

J region 1 (wave number k1)

region 2 (wave number k2)

z = 0, conducting film (conductivity �)

FIG. 1. Vertical unit electric dipole at distance a from planar thin conducting film. The infinitely

thin film lies in the plane z = 0, between region 1 (half space {z > 0} with wave number k1) and

region 2 ({z < 0} with wave number k2); and has surface conductivity σ.

upper half space {z > 0} with wave number k1, from region 2, the lower half space {z < 0}
with wave number k2 (Figs. 1 and 2). We assume that <kj > 0 and =kj > 0 (j = 1, 2), i.e.,

a lossy medium j, including the case with =kj � <kj. Note that k2
j = ω2µ0ε̃j where µ0 is

the magnetic permeability of free space, since the media are assumed non-magnetic, and ε̃j

is the complex permittivity of medium j; in practically appealing situations, this ε̃j has a

small imaginary part.

The time-harmonic Maxwell equations for the field (Ej,Bj) in region j dictate that

∇× Ej = iωBj , (3a)

∇×Bj = −i(k2
j/ω)Ej + µ0J . (3b)

By Gauss’ law, ∇ ·Bj = 0 and ∇ ·Ej = 0 if (x, y, z) 6= r0; however, these equations are not

independent from (3) in the time-harmonic case and, therefore, are not utilized here. Equa-

tions (3) are supplemented with boundary conditions for the tangential components, viz.,7,11

ez × (E1 − E2)
∣∣
z=0

= 0 , (4a)

ez × (B1 −B2)
∣∣
z=0

= µ0σE‖ , (4b)

where E‖ := {E1−(ez·E1)ez}
∣∣
z=0

= {E2−(ez·E2)ez}
∣∣
z=0

denotes the (continuous) tangential

electric field at z = 0. Notably, condition (4b) expresses the physical property that the thin
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FIG. 2. Horizontal unit electric dipole at distance a from planar thin conducting film. The film

lies in the plane z = 0, separating region 1 from region 2; and has surface conductivity σ.

conducting film amounts to an effective surface current of density Js = σE‖ at z = 0; this

Js is viewed as a free current density for the field outside the film. The boundary conditions

for the normal components of (E,B) are redundant for the derivation of a solution; see

Appendix A. In addition to (4), we impose the Sommerfeld radiation condition, viz.,29

(
∂

∂r
− ikj

)
Fjs = o

(
1

r

)
as r →∞ (r =

√
x2 + y2 + z2) , (5)

uniformly in r/r if z 6= 0, for each scalar component Fjs (s = x, y, z) of the vector-valued

field Fj (Fj = Ej,Bj); r = x ex + y ey + z ez is the position vector in Cartesian coordinates.

Equations (3)–(5) with (1) or (2) constitute the desired boundary value problem.

III. FOURIER REPRESENTATION OF SOLUTION

In this section, we derive one-dimensional integral representations for (Ej,Bj) for a verti-

cal and a horizontal electric dipole. The starting point is the Fourier transform with respect

to (x, y) of (3) and (4). Accordingly, let

Fj(x, y, z) =
1

(2π)2

∫
R2

dη dξ F̂j(ξ, η, z) ei(ξx+ηy) , (6)
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where Fj = Ej, Bj and F̂j is the Fourier transform of Fj in (x, y), assuming that the integral

converges in an appropriate sense. Consequently, by (3) the transformed variables obey

iηÊjz −
∂

∂z
Êjy = iωB̂jx ,

−iξÊjz +
∂

∂z
Êjx = iωB̂jy ,

iξÊjy − iηÊjx = iωB̂jz , (7a)

and

iηB̂jz −
∂

∂z
B̂jy = −i(k2

j/ω)Êjx + µ0Ĵx ,

∂

∂z
B̂jx − iξB̂jz = −i(k2

j/ω)Êjy + µ0Ĵy ,

iξB̂jy − iηB̂jx = −i(k2
j/ω)Êjz + µ0Ĵz , (7b)

where (Ĵx, Ĵy, Ĵz) = (0, 0, δa) or (δa, 0, 0) is the Fourier transform of Jv or Jh, respectively;

δa = δ(z− a). Equations (7) are complemented with the transformation of boundary condi-

tions (4) and radiation condition (5).

A. Vertical dipole

Consider Fig. 1. In this case, by symmetry we have Bjz ≡ 0 for j = 1, 2. The remaining

field components can be expressed in terms of B̂jy, as shown below. Equations (7) combined

yield the differential equation26(
∂2

∂z2
+ β2

j

)
B̂jy = iξµ0 δ(z − a) z ∈ R \ {0} ,

where

βj := (k2
j − ξ2 − η2)1/2 , =βj > 0 (j = 1, 2) .

In compliance with radiation condition (5), we write

B̂1y(ξ, η, z) = C>e
iβ1z +

ξµ0

2β1

eiβ1|z−a| (z > 0) , B̂2y(ξ, η, z) = C<e
−iβ2z (z < 0) , (8)

where C> and C< are integration constants to be determined. In view of (7), the remaining

field components are given in terms of B̂jy by the relations26

B̂jx = −η
ξ
B̂jy , (9)
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Êjx = −iω
k2
j

∂B̂jy

∂z
, Êjy = −iω

k2
j

η

ξ

∂B̂jy

∂z
, Êjz = − ω

k2
j

ξ2 + η2

ξ
B̂jy (z 6= 0, a) . (10)

To determine C> and C< we resort to conditions (4), by which Ê1x = Ê2x, Ê1y = Ê2y,

B̂1x − B̂2x = µ0σÊ2y, and B̂1y − B̂2y = −µ0σÊ2x at z = 0. In fact, we need only apply

the first and third (or, second and fourth) of these conditions since we have set B̂jz ≡ 0 ab

initio; the other two conditions are then satisfied. Thus, we obtain

C> = −µ0ξ

2β1

Rm e
iβ1a ,

C< = µ0k
2
2ξ
eiβ1a

P ,

where the factor Rm is defined as

Rm =
k2

1β2 − k2
2β1 − ωµ0σβ1β2

P (11)

which is associated with the reflection of TM-polarized plane waves from the thin layer (the

subscript “m” stands for “magnetic”, implying TM polarization); and the corresponding

denominator, P , is3,7

P = k2
1β2 + k2

2β1 + ωµ0σβ1β2 . (12)

The two-dimensional Fourier integrals for (E,B) then follow from (6) with (8)–(10).

To reduce representation (6) to one-dimensional integrals, we resort to the cylindrical

coordinates (ρ, φ, z) where x = ρ cosφ and y = ρ sinφ (0 ≤ φ < 2π), following Ref. 26. The

cylindrical components of the field Fj (Fj = Ej,Bj) include Fjρ = Fjx cosφ+ Fjy sinφ and

Fjφ = −Fjx sinφ+ Fjy cosφ. Accordingly, let (ξ, η) 7→ (λ, φ′) with (ξ, η) = (λ cosφ′, λ sinφ′)

where λ ≥ 0 and 0 ≤ φ′ < 2π; thus, ξx + ηy = λρ cos(φ − φ′) and dξ dη = λ dφ′ dλ. By

direct integration in φ′, we find

Ejφ ≡ 0 and Bjρ ≡ 0 ,

as expected by symmetry because of the dipole orientation. For the remaining components,

we invoke the known formula31

einφJn(w) =
i−n

2π

∫ 2π

0

dφ′ eiw cos(φ−φ′)+inφ′ (13)

for n = 0 and 1, where Jn is the Bessel function of nth order, and n ∈ Z.

Consequently, after some algebra, we find the following integral representations.
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For z > 0 (region 1) with (x, y, z) 6= (0, 0, a),

E1ρ(ρ, φ, z) =
iωµ0

4πk2
1

∫ ∞
0

dλλ2J1(λρ)
[
sgn(z − a)eiβ1|z−a| −Rm e

iβ1(z+a)
]
, (14a)

E1z(ρ, φ, z) = − ωµ0

4πk2
1

∫ ∞
0

dλ
λ3

β1

J0(λρ)
[
eiβ1|z−a| −Rm e

iβ1(z+a)
]
, (14b)

B1φ(ρ, φ, z) =
iµ0

4π

∫ ∞
0

dλ
λ2

β1

J1(λρ)
[
eiβ1|z−a| −Rm e

iβ1(z+a)
]

; (15)

and for z < 0 (region 2),

E2ρ(ρ, φ, z) = −iωµ0

2π

∫ ∞
0

dλλ2J1(λρ)
β2

P e−iβ2z+iβ1a , (16a)

E2z(ρ, φ, z) = −ωµ0

2π

∫ ∞
0

dλλ3J0(λρ)
1

P e−iβ2z+iβ1a , (16b)

B2φ(ρ, φ, z) =
iµ0k

2
2

2π

∫ ∞
0

dλλ2J1(λρ)
1

P e
−iβ2z+iβ1a . (17)

In the above, sgn(z) = 1 if z > 0 and sgn(z) = −1 if z < 0; and, by (11) and (12), Rm

and P are functions of λ with

βj(λ) = (k2
j − λ2)1/2 (j = 1, 2) . (18a)

In accord with the Sommerfeld radiation condition, the top (physical) Riemann sheet in the

four-sheeted λ-Riemann surface for the field components is fixed by imposition of

=βj(λ) > 0 , (18b)

for each j = 1, 2; thus, βj(λ) = βj(−λ) in this Riemann sheet. We note in passing that in

the limit where a ↓ 0 and z → 0, integrals (14)–(17) approach expressions that are divergent

in the conventional sense yet become meaningful as finite in the sense of Abel.30,32 This

physically transparent interpretation permeates Section IV.

B. Horizontal dipole

Next, we focus on the geometry of Fig. 2. In this case, all cylindrical field components

are in principle nonzero. By (7), Êjx and B̂jx satisfy26(
∂2

∂z2
+ β2

j

)
Êjx = −iωµ0(k2

1 − ξ2)

k2
1

δ(z − a) ,(
∂2

∂z2
+ β2

j

)
B̂jx = 0 ,
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where z 6= 0 and βj(λ) is defined in (18), with admissible solutions

Ê1x = −ωµ0(k2
1 − ξ2)

2β1k2
1

eiβ1|z−a| +K>e
iβ1z (z > 0) , Ê2x = K<e

−iβ2z (z < 0) , (19)

B̂1x = C>e
iβ1z (z > 0) , B̂2x = C<e

−iβ2z (z < 0) , (20)

consistent with radiation condition (5). Note that C> 6= C< here because, in view of

condition (4b), the tangential component of the B field is not continuous across z = 0, in

contrast to the formulation of Ref. 26. The integration constants C<, C>, K< and K> are

determined through boundary conditions (4). By transformed Maxwell equations (7), the

remaining field components can be expressed in terms of Êjx and B̂jx as

B̂jy = − 1

k2
j − ξ2

(
i
k2
j

ω

∂Êjx
∂z

+ ηξB̂jx

)
, B̂jz =

1

k2
j − ξ2

(
−ηk

2
j

ω
Êjx + iξ

∂B̂jx

∂z

)
, (21)

Êjy =
i

k2
j − ξ2

(
iηξÊjx+ω

∂B̂jx

∂z

)
, Êjz =

i

k2
j − ξ2

(
ξ
∂Êjx
∂z
− iηωB̂jx

)
(z 6= 0, a) . (22)

We proceed to compute the fields. By (4a) we impose Ê1x = Ê2x at z = 0; thus,

K> = K< +
ωµ0(k2

1 − ξ2)

2β1k2
1

.

We henceforth set K = K< for ease of notation. By (4b), we enforce B̂1x − B̂2x = µ0σÊ2y

at z = 0 which yields

C> = − µ0σ ηξ

k2
2 − ξ2

K +

(
1 +

ωµ0σβ2

k2
2 − ξ2

)
C< .

Now introduce C = C<. Thus, it suffices to determine the integration constants K and C.

By (4), the continuity condition Ê1y = Ê2y and the jump condition B̂1y− B̂2y = −µ0σÊ2x

at z = 0 lead to the system

ηξ

[
1

k2
1 − ξ2

(
1− ωµ0σβ1

k2
2 − ξ2

)
− 1

k2
2 − ξ2

]
K + ω

[
β1

k2
1 − ξ2

(
1 +

ωµ0σβ2

k2
2 − ξ2

)
+

β2

k2
2 − ξ2

]
C = 0 ,

−
{

k2
1β1

k2
1 − ξ2

+
k2

2β2

k2
2 − ξ2

+ ωµ0σ

[
1 +

η2ξ2

(k2
1 − ξ2)(k2

2 − ξ2)

]}
K

+ ωηξ

[
1

k2
1 − ξ2

(
1 +

ωµ0σβ2

k2
2 − ξ2

)
− 1

k2
2 − ξ2

]
C = ωµ0e

iβ1a .

After some algebra, the determinant for this system is found to be

D =
P Q

(k2
1 − ξ2)(k2

2 − ξ2)
,
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where P is defined by (12), and

Q = β1 + β2 + ωµ0σ (23)

corresponds to TE polarization.7 It follows that

C = µ0ηξ
k2

2 − k2
1 − ωµ0σβ1

P Q eiβ1a ,

K = −ωµ0
β1(k2

2 − ξ2) + β2(k2
1 − ξ2) + ωµ0σβ1β2

P Q eiβ1a .

Accordingly, all field components are now obtained via (19)–(22) by use of Fourier inte-

gral (6). By representing the resulting two-dimensional integrals in cylindrical coordinates

(ρ, φ, z) and using (13),26 we obtain the following expressions.

For z > 0 (region 1):

E1ρ(ρ, φ, z) = −ωµ0

4π
cosφ

(
1

2

∫ ∞
0

dλλ

{
[J0(λρ)− J2(λρ)]

β1

k2
1

Rm

− [J0(λρ) + J2(λρ)]
1

β1

Re

}
eiβ1(z+a)

+

∫ ∞
0

dλλ

{
J0(λρ)− λ2

2k2
1

[J0(λρ)− J2(λρ)]

}
1

β1

eiβ1|z−a|

)
, (24a)

E1φ(ρ, φ, z) =
ωµ0

8πk2
1

sinφ

(∫ ∞
0

dλλ

{
−[J0(λρ)− J2(λρ)]

k2
1

β1

Re

+ [J0(λρ) + J2(λρ)] β1Rm

}
eiβ1(z+a)

+

∫ ∞
0

dλλ

{
k2

1J0(λρ)− λ2

2
[J0(λρ) + J2(λρ)]

}
2

β1

eiβ1|z−a|

)
, (24b)

E1z(ρ, φ, z) =
iωµ0

4πk2
1

cosφ

∫ ∞
0

dλλ2J1(λρ)
[
sgn(z − a)eiβ1|z−a| +Rm e

iβ1(z+a)
]
, (24c)

B1ρ(ρ, φ, z) = −µ0

8π
sinφ

(∫ ∞
0

dλλ
{

[J0(λρ) + J2(λρ)]Rm

− [J0(λρ)− J2(λρ)]Re

}
eiβ1(z+a)

+ 2 sgn(z − a)

∫ ∞
0

dλλJ0(λρ) eiβ1|z−a|

)
, (25a)
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B1φ(ρ, φ, z) = −µ0

8π
cosφ

(∫ ∞
0

dλλ
{

[J0(λρ)− J2(λρ)]Rm

− [J0(λρ) + J2(λρ)]Re

}
eiβ1(z+a)

+ 2 sgn(z − a)

∫ ∞
0

dλλJ0(λρ) eiβ1|z−a|

)
, (25b)

B1z(ρ, φ, z) = −iµ0

4π
sinφ

∫ ∞
0

dλλ2J1(λρ)
1

β1

[
Re e

iβ1(z+a) − eiβ1|z−a|
]

; (25c)

and for z < 0 (region 2),

E2ρ(ρ, φ, z) = −ωµ0

4π
cosφ

∫ ∞
0

dλλ

{
[J0(λρ) + J2(λρ)]

1

Q

+ [J0(λρ)− J2(λρ)]
β1β2

P

}
eiβ1a−iβ2z , (26a)

E2φ(ρ, φ, z) =
ωµ0

4π
sinφ

∫ ∞
0

dλλ

{
[J0(λρ)− J2(λρ)]

1

Q

+ [J0(λρ) + J2(λρ)]
β1β2

P

}
eiβ1a−iβ2z , (26b)

E2z(ρ, φ, z) = −iωµ0

2π
cosφ

∫ ∞
0

dλλ2J1(λρ)
β1

P eiβ1a−iβ2z , (26c)

B2ρ(ρ, φ, z) =
µ0

4π
sinφ

∫ ∞
0

dλλ

{
[J0(λρ) + J2(λρ)]

k2
2β1

P

+ [J0(λρ)− J2(λρ)]
β2

Q

}
eiβ1a−iβ2z , (27a)

B2φ(ρ, φ, z) =
µ0

4π
cosφ

∫ ∞
0

dλλ

{
[J0(λρ)− J2(λρ)]

k2
2β1

P

+ [J0(λρ) + J2(λρ)]
β2

Q

}
eiβ1a−iβ2z , (27b)

B2z(ρ, φ, z) =
iµ0

2π
sinφ

∫ ∞
0

dλλ2J1(λρ)
1

Q eiβ1a−iβ2z . (27c)

In the above, the factor

Re =
β2 − β1 + ωµ0σ

Q (28)

is associated with the reflection of plane waves with TE polarization from a thin layer (the

subscript “e” stands for “electric”, implying TE polarization); also, recall (11), (12) and (23)

for Rm, P and Q, respectively. Similarly to the vertical-dipole case (Section III A), the top

Riemann sheet is defined by =βj(λ) > 0, as in (18b).
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C. Poles in λ-Riemann surface

We now discuss the role of singularities in evaluating integrals (14)–(17) and (24)–(27).

The singularities of the integrands include: branch points at λ = k1, k2 because of the

multiple-valued βj(λ) of (18a); and simple poles identified with zeros of P(λ) and Q(λ)

by (12) and (23). The λ-Riemann surface associated with each integrand consists of four

Riemann sheets if k1 6= k2; the physically relevant (top) one is fixed by =βj(λ) > 0. The

location of the poles in this Riemann surface is closely related to the complex surface con-

ductivity, σ.7

1. Denominator P(λ)

By (12), the zeros of P(λ) satisfy

k2
1

(k2
1 − λ2)1/2

+
k2

2

(k2
2 − λ2)1/2

+ ωµ0σ = 0 . (29)

Equation (29) is identified with the dispersion relation for the surface plasmon in the context

of TM polarization for plane waves3 if λ is viewed as the component of the vector wave

number tangential to the interface. For nearly lossless ambient media (=kj ' 0), roots

of (29) lie in the first Riemann sheet if

=σ > 0 . (30)

For a graphene layer, this is consistent with the Kubo formula in the far-infrared regime.6,7,33,34

Consider the special case with k1 = k2 =: k (Section IV) in which the λ-Riemann surface

for the fields has two sheets. Then, P(λ) = (2k2 +ωµ0σ
√
k2 − λ2)

√
k2 − λ2 and (29) reduces

to
√
k2 − λ2 = −2k2/(ωµ0σ), which is solved in the first Riemann sheet if −π < arg k2 −

arg σ < 0. Equation (29) has two solutions, λ = ±km, where

km =

√
k2 − 4k4

(ωµ0σ)2
; (31)

the branch of the square root is chosen so that =km > 0. These ±km are simple poles of

the corresponding integrands for the fields. In the “nonretarded frequency regime”,6 one

imposes |ωµ0σ| � |k| by which 1/|σ| �
√
µ0/|ε̃|, where

√
µ0/|ε̃| is the magnitude of the

intrinsic impedance of the adjacent homogeneous space; thus, we obtain km ∼ i 2k2/(ωµ0σ).

14



For arg σ = π/2 − δ, 0 < δ < π, the analytically continued square-root function yields

(k2 − k2
m)1/2 = ieiδ2k2/(ωµ0|σ|) and km lies in the first Riemann sheet for the appropriate

range of δ and phase of k, as outlined above; this km reads

km ∼
2k2

ωµ0|σ|
eiδ , |ωµ0σ| � |k| . (32)

If =
√
k2 − k2

m < 0, then km is in the second Riemann sheet.

We adhere to the following definition for the purposes of the analysis in Section IV.

Definition 1 (TM surface plasmon). The TM surface plasmon corresponds to the

residue contribution to the electromagnetic field from the pole λ = km, provided this pole lies

in the first Riemann sheet.

We note in passing that in the more general setting with k1 6= k2, one finds the simple

poles ±km ∼ ±i(k2
1 + k2

2)/(ωµ0σ) if |(k2
1 + k2

2)/(ωµ0σ)| � max{|k1|, |k2|}.

2. Denominator Q(λ)

By (23), the zeros of Q(λ) obey

(k2
1 − λ2)1/2 + (k2

2 − λ2)1/2 + ωµ0σ = 0 , (33)

which has two roots, ±ke, in the λ-Riemann surface, where7,8

ke =
1

2

√
−(k2

1 − k2
2)2

(ωµ0σ)2
+ 2(k2

1 + k2
2)− (ωµ0σ)2 .

For definiteness, the branch of the square root is chosen so that ke → k if one sets k1 = k2 = k

and then lets ωµ0σ → 0. The ±ke are simple poles of the corresponding integrands for the

fields. By (33) and for nearly lossless ambient media (=kj ' 0), ±ke lie in the top Riemann

sheet if

=σ < 0 , (34)

in contrast to (30). Thus, for the appealing case with nonzero =σ and an ambient lossless

dielectric,6,7 only one of km and ke lies in the top Riemann sheet.7 If |ωµ0σ|2 � |k2
1 + k2

2|,
then ±ke ∼ ±(i/2)(k2

1−k2
2)/(ωµ0σ) for k1 6= k2; hence, |ke| may take a wide range of values.

In the special case with k1 = k2 = k (Section IV), (33) reduces to
√
k2 − λ2 = −ωµ0σ/2,

which is solved in the first Riemann sheet if −π < arg σ < 0. We find

ke =

√
k2 − (ωµ0σ)2

4
. (35)
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If |ωµ0σ| � |k| then ke ∼ k − (ωµ0σ)2/(8k) ∼ k. By setting arg σ = π/2− δ, we find

ke − k ∼
(ωµ0|σ|)2

8k
e−i2δ , |ωµ0σ| � |k| (0 < δ < π) . (36)

The above discussion leads to the following remark.

Remark 1 (On the co-existence of poles km and ke in top Riemann sheet). Consider the

case with k1 = k2 = k. We henceforth assume that 0 ≤ arg k2 < π/2 and <σ > 0 with

arg σ = π/2− δ (0 < δ < π). Thus, at most one of the poles at km and ke is present in the

top λ-Riemann sheet.

Specifically: If =σ > 0 with 0 < δ < π/2− arg k2, then km lies in the top Riemann sheet;

and if =σ < 0 (π/2 < δ < π), then ke lies in the top Riemann sheet.

IV. EXACT EVALUATION OF FIELD ON PLANE OF FILM

In this section, we analytically evaluate the integrals for the electromagnetic field (Sec-

tions III A and III B) on one side of the layer by setting k1 = k2 = k and allowing the dipole

and observation point (x, y, z) to approach z = 0.

A. Formalism

For the vertical dipole (Fig. 1), let a ↓ 0 with 0 < z < a, so that (ρ, φ, z) approaches the

film from region 1. Equations (14) and (15) reduce to the following expressions.

E
(vd)
1ρ = −iωµ0

2π

1

(ωµ0σ)2

[
2k2

ρ
I1 −

ωµ0σ

ρ2
I2 + 2k2k2

mρ I3(kmρ)− ωµ0σk
2
m I4(kmρ)

]
, (37)

B
(vd)
1φ =

iµ0

2π

{
k2

ωµ0σ

1

ρ
I1 −

1

ρ2
I2 +

[
k2 − 2k4

(ωµ0σ)2

]
Ĭ2 +

k2k2
mρ

ωµ0σ
I3(kmρ)

− 2k4k2
mρ

2

(ωµ0σ)2
Ĭ4(kmρ)

}
, (38)

E
(vd)
1z =

iω

k2

1

ρ

∂

∂ρ
(ρB

(vd)
1φ )

= − ωµ0

2πk2

1

ρ

∂

∂ρ
ρ

{
k2

ωµ0σ

1

ρ
I1 −

1

ρ2
I2 +

[
k2 − 2k4

(ωµ0σ)2

]
Ĭ2 +

k2k2
mρ

ωµ0σ
I3(kmρ)

− 2k4k2
mρ

2

(ωµ0σ)2
Ĭ4(kmρ)

}
, (39)
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where the requisite integrals read

I1 =

∫ ∞
0

dλ′ J1(λ′) = −
∫ ∞

0

dλ′
d

dλ′
J0(λ′) = J0(0) = 1 , (40a)

I2 =

∫ ∞
0

dλ′
√

(kρ)2 − λ′2 J1(λ′) , Ĭ2 =

∫ ∞
0

dλ′
J1(λ′)√

(kρ)2 − λ′2
, (40b)

I3($) =

∫ ∞
0

dλ′
J1(λ′)

λ′2 −$2
, (40c)

I4($) =

∫ ∞
0

dλ′
√

(kρ)2 − λ′2
λ′2 −$2

J1(λ′) , Ĭ4($) =

∫ ∞
0

dλ′
1√

(kρ)2 − λ′2
J1(λ′)

λ′2 −$2
, (40d)

with Ĭ4($) = −[$2− (kρ)2]−1[Ĭ2 + I4($)]. Thus, we only need to compute I2, Ĭ2, I3 and I4.

For a horizontal dipole (Fig. 2), we choose to evaluate the field on the side of the layer that

faces the source-free region: Let a ↓ 0 and z ↑ 0 so that the observation point approaches

the plane z = 0 from region 2. By (26) and (27), the ensuing representations for the field

components at z = 0 in region 2 read

E
(hd)
2z = −iωµ0

2π

1

(ωµ0σ)2
cosφ

[
2k2

ρ
I1 −

ωµ0σ

ρ2
I2 + 2k2k2

mρ I3(kmρ)

− ωµ0σk
2
m I4(kmρ)

]
, (41)

E
(hd)
2ρ = −ωµ0

4π
cosφ

{
1

2ρ
[ωµ0σρ I3(keρ)− 2 I4(keρ)] +

2

(ωµ0σ)2

d

dρ

[
ωµ0σ

ρ
I1

− 4k4ρ

ωµ0σ
I3(kmρ) + 2k2 I4(kmρ)

]}
, (42)

E
(hd)
2φ =

ωµ0

4π
sinφ

{
1

2

d

dρ
[ωµ0σρ I3(keρ)− 2 I4(keρ)] +

2

(ωµ0σ)2

1

ρ

[
ωµ0σ

ρ
I1

− 4k4ρ

ωµ0σ
I3(kmρ) + 2k2 I4(kmρ)

]}
, (43)

B
(hd)
2z =

iµ0

8π
sinφ

[
ωµ0σ

ρ
I1 −

2

ρ2
I2 + ωµ0σk

2
eρ I3(keρ)− 2k2

e I4(keρ)

]
, (44)

B
(hd)
2ρ =

µ0

4π
sinφ

{
2k2

(ωµ0σ)2

1

ρ
[2k2ρ I3(kmρ)− ωµ0σ I4(kmρ)] +

1

2

d

dρ

[
2

ρ
I1

− (ωµ0σ)2

2
ρ I3(keρ) + ωµ0σ I4(keρ)

]}
, (45)

B
(hd)
2φ =

µ0

4π
cosφ

{
2k2

(ωµ0σ)2

d

dρ
[2k2ρ I3(kmρ)− ωµ0σ I4(kmρ)] +

1

2ρ

[
2

ρ
I1

− (ωµ0σ)2

2
ρ I3(keρ) + ωµ0σ I4(keρ)

]}
. (46)
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In the above, we provide expressions for the fields on one side of the layer for each source;

the fields on the other side can be found through the imposed boundary conditions (Section II

and Appendix A). The integrals I3($), I4($) and Ĭ4($) are evaluated in Section IV B. (The

reader who wishes to skip technical derivations may proceed directly to Section IV C.)

The field of the vertical dipole bears TM polarization, as indicated by (37)–(39) with (40).

On the other hand, the field of the horizontal dipole carries the signatures of TM and TE

polarization.

B. Key integrals and generalized Schwinger-Feynman representation

Next, we provide derivations for requisite integrals (40b)–(40d) in terms of known tran-

scendental functions. This section forms a crucial part of our formal analysis. We follow the

formalism of Ref. 30, elements of which we repeat here for the sake of completeness. This pro-

cedure should clarify the role of certain singularities related to material properties of the film.

For later algebraic convenience, set kρ =: iq and $ =: iß recalling that $ = kmρ or keρ;

and treat q and ß as positive for the purpose of computing the integrals. The extension of

the requisite integrals to the actual, physically relevant values of these parameters will be

carried out once the integrals are evaluated. Accordingly, set
√

(kρ)2 − λ′2 = i
√
λ′2 + q2

and treat
√
λ′2 + q2 as positive if λ′ is real. Firstly, we directly find that30,35

I2 = i(q + e−q) = kρ+ ieikρ , Ĭ2 = −iq−1(1− e−q) =
1− eikρ
kρ

. (47)

1. Integral I3($)

By (40c), we resort to writing J1(λ) = (1/2)[H
(1)
1 (λ) + H

(2)
1 (λ)] where H

(1,2)
ν is the (first

or second) Hankel function of order ν.31 By the identity H
(2)
1 (λe−iπ) = H

(1)
1 (λ), valid for

λ 6= 0, (40c) becomes

I3($) =
1

2

∫
C

dλ′
H

(1)
1 (λ′)

λ′2 + ß2
− 1

2
lim
ε↓0

∫
Cε

dλ′
H

(1)
1 (λ′)

λ′2 + ß2
=

π

2ß
H

(1)
1 (iß) + ß−2

=
iπ

2$
H

(1)
1 ($)− 1

$2
, (48)

by contour integration, where the contours C and Cε are depicted in Fig. 3; cf. Ref. 36. The

integrals in the first line of (48) provide the Cauchy principal value of 1
2

∫∞
−∞ dλ′H

(1)
1 (λ′) (λ

′2+

ß2)−1 which accounts for the singularity of H
(1)
1 (λ′) at λ′ = 0.
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(1)
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<�0
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�iß

FIG. 3. Branch-cut configuration and contours in the λ′-plane for the integral I3($); see (48). The

integrand has simple poles at ±iß (ß = −i$ is treated as positive). Contour C = (−∞,−ε) ∪ Cε ∪

(ε,∞) (solid line with arrows) is identified with the real axis except for a small indentation, Cε, of

radius ε around 0 in the upper half-plane; ε ↓ 0. Contour C+ (dashed line) in the upper half-plane

closes the path; the contour C ∪ C+ picks up the residue at λ = iß.

2. Integrals I4($) and Ĭ4($)

We seek exact formulas for (40d) with $ = kmρ and $ = keρ. Such formulas should be

particularly useful for |ωµ0σ| � |k|, by which |ke| ∼ |k| � |km|; cf. (31) and (35). Thus, we

view as small the parameters: |k/km|, with $ = kmρ; and |(ke − k)/ke|, with $ = keρ. Our

derivation is tailored to the case where km lies in the first Riemann sheet (see Remark 1); the

extension to other values of the physical parameters is discussed in the end of this section.

The first step is to convert I4($) in (40d) to an integral of an elementary function. In

the spirit of the Schwinger-Feynman approach, consider the generalized representation30

A−νC−1 =
1

Γ(ν)

∫ ∞
0

∫ ∞
0

ds1 ds2 s
ν−1
1 e−(As1+Cs2) = ν

∫ 1

0

du u−1+ν [(A−C)u+C]−1−ν , <ν > 0 ,

via the change of variable (s1, s2) 7→ (u, v) with (s1, s2) = (uv, (1 − u)v) and integration in

v; Γ(z) is the Gamma function. We assume that 0 < C < A, a condition to be relaxed later;
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here, A = λ′2 + q2, C = λ′2 + ß2. By using the above representation for A−νC−1, we obtain∫ ∞
0

dλ′
(λ′2 + q2)−ν

λ′2 + ß2
J1(λ′) =

ν

1− ei2πν
∮
C0

du u−1+ν [q2u+ ß2(1− u)]−(1+ν)

{
1− 2−ν

Γ(1 + ν)

× [q2u+ ß2(1− u)]
1+ν
2 K1+ν

(
(q2u+ ß2(1− u))1/2

)}
. (49)

The contour C0 serves the analytic continuation of the integral on the left-hand side to values

of ν with <ν < 0 (see Fig. 4). To derive (49), we interchanged the order of integration (in

λ′ and u), and made use of a result from Ref. 35 to carry out the integration in λ′; Kν is the

modified Bessel function of order ν, with K1/2(ζ) =
√
π/(2ζ) e−ζ .31 By the change of variable

u 7→ ζ with ζ2 = q2u + ß2(1− u), integration by parts via the identity d
dζ

[ζ−2ν(ζ2 − ß2)ν ] =

2ß2νζ−1−2ν(ζ2 − ß2)ν−1, and the subsequent substitution ν = −1/2, we find

I4($) = i

∫ ∞
0

dλ′
√
λ′2 + q2

λ′2 + ß2
J1(λ′)

=
iq

ß2

(
1− e−q

)
− i
√
q2 − ß2

ß2

∫ q

ß

dζ
ζ√

ζ2 − ß2
e−ζ

= − kρ
$2

(
1− eikρ

)
+ i

√
$2 − (kρ)2

$

∫ 1

kρ/$

dη
η√

1− η2
ei$η , (50)

which provides I4($) in terms of an integral of an elementary function.

We proceed to simplify (50). For this purpose, define

W (`, ς;$) :=

∫ ς

`

dη
η√

1− η2
ei$η . (51)

We seek appropriate expansions of this W for ς = 1 with: (i) ` = k/km and $ = kmρ where

|`| < 1; and (ii) ` = k/ke and $ = keρ where |1− `| < 1. |$| should be unrestricted in each

case.

(i) Case ` = k/km, $ = kmρ. By writing

W (k/km, 1; kmρ) = W (0, 1; kmρ)−W (0, k/km; kmρ) (52)

and resorting to Ref. 31, we obtain the formula

W (0, 1; kmρ) = 1− π

2

[
H1(kmρ)− Y1(kmρ)

]
+
iπ

2
H

(1)
1 (kmρ) , (53)

where Hν (Yν) is the Struve (Neumann) function of order ν. In (53), the last term cor-

responds to the contribution to I4(kmρ) from the residue at λ′ = kmρ. For the remaining
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FIG. 4. Contour C0 of integration for generalized integral on right-hand side of (49) pertaining

to I4($); 0 < ß2 < q2. The integrand has branch points at u = 0, −ß2/(q2 − ß2); only the cut

emanating from 0 is shown here, indicating the passage of the integrand from the first Riemann

sheet for u−1+ν , where u−1+ν > 0 if u > 0, to an adjacent Riemann sheet.

terms, note the large-|ζ| expansion31

Hν(ζ)− Yν(ζ) = π−1

M−1∑
n=0

Γ(1
2

+ n)

Γ(ν + 1
2
− n)

(
2

ζ

)2n−ν+1

+O(|ζ|−2M+ν−1) , | arg ζ| < π . (54)

Now consider the term W (0, k/km; kmρ) in (52) by inspection of (51). By expanding

η(1 − η2)−1/2 at η = 0 with |η| < 1 and integrating term by term, we derive the geometri-

cally convergent series

W (0, k/km; kmρ) =
∞∑
l=0

(
1

2

)
l

(−1)l+1

l!

(
k2

k2
m

)l+1
d2l+1

dζ2l+1

(
1− eiζ
ζ

)∣∣∣∣
ζ=kρ

,

∣∣∣∣ k2

k2
m

∣∣∣∣ < 1 , (55)

where (b)l is Pochhammer’s symbol; (b)l = Γ(l + b)/Γ(b). Formula (55) concludes the

evaluation of W (k/km, 1; kmρ) by (52).

(ii) Case ` = k/ke, $ = keρ. By changing integration variable from η to v = 1 − η and

expanding η(1− η2)−1/2 = (1− v)v−1/2(2− v)−1/2 at v = 0, we recast (51) to

W (k/ke, 1; keρ) =
eikρ√
2keρ

∞∑
l=0

(
1

2

)
l

1 + 2l

1− 2l

(2keρ)−l

l!
fl((ke − k)ρ) ,

where

fl(z) =

∫ z

0

dv v−1/2+l ei(z−v) .
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This fl(z) has generating function

G(ζ; z) :=
∞∑
l=0

fl(z)

l!
(−iζ)l =

√
2π eiz (1 + ζ)−1/2F0((1 + ζ)z) ,

where F0 is given in terms of the Fresnel integrals C(z) and S(z),37 viz.,

F0(z) =

∫ z

0

dτ
e−iτ√
2πτ

= C(z)− iS(z)

=
1√
2
e−iπ/4 − e−izF(z) ; F(z) := eiz

∫ ∞
z

dτ
e−iτ√
2πτ

. (56a)

In particular, note the asymptotic expansion

F(z) = − i√
2πz

[
1 +

i

2z
+O(z−2)

]
as |z| → ∞ . (56b)

Thus, by use of the generating function G we write

fl(z) =
√

2π ilzl+1/2 eiz
dl

dzl
[
z−1/2F0(z)

]
,

and derive the desired expansion for W :

W (k/ke, 1; keρ) =
√
π eikρ

∞∑
l=0

(
1

2

)
l

1 + 2l

1− 2l

(i/2)l

l!

(
ke − k
ke

)l+1/2

ei℘
dl

dzl
[
z−1/2F0(z)

]∣∣∣∣
z=℘

.

(57)

This series exhibits geometric rate of convergence for |(ke − k)/ke| < 1 and all ℘ where

℘ := (ke − k)ρ ∼ e−i2δ
(ωµ0|σ|)2ρ

8k
, |ωµ0σ| � |k| , (58)

with arg σ = π/2 − δ (0 < δ < π). This ℘ is analogous to Sommerfeld’s “numerical

distance”;38 cf. (36).

Thus, by (50), integral I4($) reads

I4($) = − kρ
$2

(
1− eikρ

)
+ i

√
$2 − (kρ)2

$
W (kρ/$, 1;$) , (59)

where W is provided by (52) with (53) and (55) for $ = kmρ; and by (57) for $ = keρ.

By (40d), Ĭ4($) equals

Ĭ4($) =
−1

$2 − (kρ)2

[(
1

kρ
− kρ

$2

)
(1− eikρ) + i

√
$2 − (kρ)2

$
W (kρ/$, 1;$)

]
. (60)

In the above, <
√
$2 − (kρ)2 = =

√
(kρ)2 −$2 > 0, in accord with the definition of the top

λ-Riemann sheet, and km is assumed to lie in this Riemann sheet; see (32).
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We now discuss formulas (59) and (60) for a wider range of parameters.

Remark 2 (On the values of I4 and Ĭ4). Equations (59) and (60) can be extended to

all physically relevant values of km (and ke) with <σ > 0 (Remark 1), by computing

(1/$)
√
$2 − (kρ)2W (kρ/$, 1;$) according to the following rules. These rules are con-

sistent with the starting formulation of the Sommerfeld-type integrals (Section III).

• For $ = kmρ: In regard to the residue contribution in W (0, 1; kmρ), set√
(kmρ)2 − (kρ)2

kmρ
H

(1)
1 (kmρ) =

√
k2
m − k2

km
H

(1)
1 (kmρ) = ± i 2k2

ωµ0σ km
H

(1)
1 (kmρ) , (61a)

where =km > 0 and the upper (lower) sign holds if the pole at km lies in the first (sec-

ond) Riemann sheet; see (32). For the remaining terms in W, set
√

(kmρ)2 − (kρ)2/(kmρ) =√
1− k2/k2

m and choose the branch so that limkm→∞
√

1− k2/k2
m = 1 for fixed k; thus,

αm :=
√

1− k2/k2
m =

∞∑
n=0

(
−1

2

)
n

(k2/k2
m)n

n!
, if |k2/k2

m| < 1 . (61b)

• For $ = keρ: Set√
(keρ)2 − (kρ)2 = −i

√
(kρ)2 − (keρ)2 = ±i ωµ0σρ/2 ; (61c)

the upper (lower) sign holds if the pole at ke lies in the first (second) λ-Riemann sheet.

The sign in (61a) controls the appearance or absence of the TM surface plasmon (Def-

inition 1). If the pole at λ = km does not lie on the top Riemann sheet, e.g., when k > 0

and =σ < 0, contribution (61a) causes cancellation of the residue from I3(kmρ) in each rel-

evant field component; then, the TM surface plasmon is absent. An analogous effect comes

from (61c) in regard to TE polarization. Equation (61b) warrants that the primary field (in

the absence of the layer) of the dipole is recovered as σ → 0 regardless of the location of the

pole at km. See Section IV C for consequences of this solution.

C. Field components: Evaluation

The field components are computed by substitution of the formulas for integrals In (n =

1, 2, 3, 4) and Ĭn (n = 1, 2) from Section IV B into (37)–(39) and (41)–(46), bearing in

mind Remarks 1 and 2. To render the resulting expressions physically transparent, we
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subsequently apply the condition |ωµ0σ| � |k| which warrants that |k/km| � 1 and |(ke −
k)/ke| � 1; the requisite series expansions can be approximated by their first few terms for

all distances ρ from the source. In Appendix B, we provide alternate evaluations of the field

components for sufficiently small and large distance, ρ, from the source.

Remark 3 (On the pole at km). We assume that the parameter σ is chosen so that the

pole at λ = km lies in the top λ-Riemann sheet (see Remark 1), unless we state otherwise.

1. Vertical dipole

The ρ-component of the electric field deserves special attention, since it vanishes at z = 0

in the absence of the layer.26 By using this component, we illustrate the role of the location of

the pole at km in the Riemann surface associated with the dual (λ) variable. By (37), we write

E
(vd)
1ρ =

i

2πσ

{(
i

ρ2
+
k

ρ

)
eikρ − iπ

2
km

(
2k2

ωµ0σ
− i
√
k2
m − k2

)
H

(1)
1 (kmρ)

+ ik2
mαm

[
1− π

2

(
H1(kmρ)− Y1(kmρ)

)
+
∞∑
l=0

(
1

2

)
l

(−1)l+1

l!

(
k2

k2
m

)l+1
d2l+1

dζ2l+1

(
1− eiζ
ζ

)∣∣∣∣
ζ=kρ

]}
. (62a)

Notice the term proportional to [2k2/(ωµ0σ) − i
√
k2
m − k2]H

(1)
1 (kmρ), which expresses the

TM surface plasmon; see Remark 2. By (61a), in this term
√
k2
m − k2 = ±i2k2/(ωµ0σ),

depending on the location of the associated pole. On the other hand, in regard to the second

line of (62a), k2
mαm ∼ k2

m[1− k2/(2k2
m)] ∼ k2

m if |km|2 � |k|2. Suppose that the pole at km

is present in the top λ-Riemann sheet, if, say, =σ > 0 and k > 0 as outlined in Section III C.

By retaining two terms in the series expansion of (62a) and enforcing |ωµ0σ| � |k|, we obtain

E
(vd)
1ρ ∼

ωµ0

2π

{
ωµ0σ

4

(
3

k4ρ4
− 3i

k3ρ3
− 1

k2ρ2

)
eikρ + iπ

4k4

(ωµ0σ)3
H

(1)
1 (kmρ) +

4k4

(ωµ0σ)3

×
(

1 +
(ωµ0σ)2

8k2

)[
1− π

2

(
H1(kmρ)− Y1(kmρ)

)
+

1

(kmρ)2
− 3

(kmρ)4

]}
. (62b)

The TM surface plasmon contribution has survived here as the term proportional to

H
(1)
1 (kmρ); see also Appendix B. In contrast, if km lies in the second Riemann sheet, if, for
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example, =σ < 0 and k > 0, the above residue contribution disappears (see Remark 2), viz.,

E
(vd)
1ρ ∼

ωµ0

2π

{
ωµ0σ

4

(
3

k4ρ4
− 3i

k3ρ3
− 1

k2ρ2

)
eikρ +

4k4

(ωµ0σ)3

(
1 +

(ωµ0σ)2

8k2

)

×
[

1− π

2

(
H1(kmρ)− Y1(kmρ)

)
+

1

(kmρ)2
− 3

(kmρ)4

]}
, |ωµ0σ| � |k| . (62c)

A similar calculation can be carried out for the other field components of the vertical

dipole. We henceforth emphasize mainly consequences of Remark 3.

Next, we turn our attention to the magnetic field. By (38) and Remark 3, we compute

B
(vd)
1φ = −iµ0

4π

{
2

(
i

ρ2
+
k

ρ

)
eikρ − iπ k

2km
ωµ0σ

(
1 +

2ik2

ωµ0σ

1√
k2
m − k2

)
H

(1)
1 (kmρ)

− 4ik4

(ωµ0σ)2

1

αm

[
1− π

2

(
H1(kmρ)− Y1(kmρ)

)
+
∞∑
l=0

(
1

2

)
l

(−1)l+1

l!

(
k2

k2
m

)l+1
d2l+1

dζ2l+1

(
1− eiζ
ζ

)∣∣∣∣
ζ=kρ

]}

∼ −iµ0

4π

{(
i

ρ2
+
k

ρ

)
eikρ + 4π

k4

(ωµ0σ)2
H

(1)
1 (kmρ)− i 4k4

(ωµoσ)2

[
1− π

2

(
H1(kmρ)

− Y1(kmρ)
)

+
1

k2
mρ

2

]}
, |ωµ0σ| � |k| . (63)

The terms with the eikρ factor in the fourth line (but not on the first line) of (63) correspond

to the primary field of a z-directed dipole in free space;26 the remaining terms in the second

equation amount to the scattered field due to the presence of the thin layer for |ωµ0σ| � |k|.
Notice the surviving residue contribution expressed by the term containing H

(1)
1 (kmρ); this

is identified with the TM surface plasmon via Definition 1. In Appendix B, we provide

alternate calculations for B
(vd)
1φ in the disparate cases with |kρ| � 1 and |kmρ| � 1.
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The z-component of the electric field is likewise computed by (39) under Remark 3:

E
(vd)
1z = − ωµ0

4πk2

{
2

(
i

ρ3
+
k

ρ2
− ik2

ρ

)
eikρ + iπ

k2k2
m

ωµ0σ

(
1 + i

2k2

ωµ0σ

1√
k2
m − k2

)
H

(1)
0 (kmρ)

+ i
4k4

(ωµ0σ)2

1

αm

1

ρ

[
1− π

2
kmρ

(
H0(kmρ)− Y0(kmρ)

)
+
∞∑
l=0

(
1

2

)
l

(−1)l+1

l!

(
k2

k2
m

)l+1
d

dζ

{
ζ
d2l+1

dζ2l+1

(
1− eiζ
ζ

)}∣∣∣∣
ζ=kρ

]}

∼ −ωµ0

4π

{(
i

k2ρ3
+

1

kρ2
− i

ρ

)
eikρ − 8πi

k4

(ωµ0σ)3
H

(1)
0 (kmρ) + i

4k2

(ωµ0σ)2

1

ρ

[
1− π

2
kmρ

×
(
H0(kmρ)− Y0(kmρ)

)
− 1

k2
mρ

2

]}
, |ωµ0σ| � |k| . (64)

The terms proportional to eikρ in the fourth line of (64) amount to the primary field of

the dipole.26 The TM surface plasmon contribution is expressed by the term proportional

to H
(1)
0 (kmρ). If |ωµ0σ| � |k| and |kmρ| = O(1), the primary field is subdominant to this

contribution provided |kρ| � |(ωµ0σ)/k| (in addition to having |kρ| � 1). See Appendix B

for asymptotic evaluations of E
(vd)
1z in the far- and near-field regimes.

2. Horizontal dipole

Next, by (41)–(46) we compute the field of the horizontal dipole. We address the z-

components first, since each of these fields involves only one type of polarization, as indicated

by the presence of only one denominator (P orQ) in their Fourier representations for k1 6= k2.

By (41), E
(hd)
2z involves only TM polarization and is computed as

E
(hd)
2z = −iωµ0

2π

1

(ωµ0σ)2
cosφ

{
−iωµ0σ

(
1

ρ2
− ik

ρ

)
eikρ +

iπkm
2

(
2k2 − iωµ0σ

√
k2
m − k2

)

×H(1)
1 (kmρ)− iωµ0σk

2
mαm

[
1− π

2

(
H1(kmρ)− Y1(kmρ)

)
+
∞∑
l=0

(
1

2

)
l

(−1)l+1

l!

(
k2

k2
m

)l+1
d2l+1

dζ2l+1

(
1− eiζ
ζ

)∣∣∣∣
ζ=kρ

]}
. (65a)

Notice the term (2k2 − iωµ0σ
√
k2
m − k2)H

(1)
1 (kmρ), in conjunction with Remark 2. By

Remark 3 and |ωµ0σ| � |k| (i.e., |km|2 � |k|2), we keep two terms in the series expansion
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and readily compute (see also Appendix B)

E
(hd)
2z ∼ −

iωµ0

2π
cosφ

{
−iωµ0σ

4

(
1

k2ρ2
+

3i

k3ρ3
− 3

k4ρ4

)
eikρ − 4π

k4

(ωµ0σ)3
H

(1)
1 (kmρ)

+
2k2km

(ωµ0σ)2

[
1− π

2

(
H1(kmρ)− Y1(kmρ)

)
+

1

k2
mρ

2
− 3

k4
mρ

4

]}
. (65b)

In the last formula, the TM surface plasmon is evident as the term proportional to H
(1)
1 (kmρ).

In contrast, if km lies in the second Riemann sheet (see Remark 2), then

E
(hd)
2z ∼ −

iωµ0

2π
cosφ

{
−iωµ0σ

4

(
1

k2ρ2
+

3i

k3ρ3
− 3

k4ρ4

)
eikρ

+
2k2km

(ωµ0σ)2

[
1− π

2

(
H1(kmρ)− Y1(kmρ)

)
+

1

k2
mρ

2
− 3

k4
mρ

4

]}
. (65c)

We next compute the z-component of the magnetic field by resorting to Remark 2. Equa-

tion (44) yields

B
(hd)
2z =

iµ0

8π
sinφ

{
−2i

(
1

ρ2
− ik

ρ

)
eikρ +

iπ

2
ωµ0σkeH

(1)
1 (keρ)− 2ike

√
k2
e − k2

×√πeikρ
∞∑
l=0

(
1

2

)
l

1 + 2l

1− 2l

(i/2)l

l!

(
ke − k
ke

)l+1/2

ei℘
dl

dzl
[
z−1/2F0(z)

]∣∣∣∣
z=℘

}
, (66a)

which involves TE polarization; F0 and ℘ are defined by (56a) and (58). The term propor-

tional to eikρ in the first line of (66a) corresponds to the field of the x-directed dipole in

free space. Beware of the factor
√
k2
e − k2 in (66a); see also Remark 2 with $ = keρ. To

simplify formula (66a), consider |ωµ0σ| � |k|, by which ke ∼ k. Thus, (66a) is reduced to

B
(hd)
2z ∼

iµ0

8π
sinφ

{
−2i

(
1

ρ2
− ik

ρ

)
eikρ +

iπ

2
ωµ0σk

[
H

(1)
1 (keρ)− 2

√
k2
e − k2

ωµ0σ

√
2

πkeρ
ei(keρ−π/4)

]

+ 2ik
√
k2
e − k2 eikρ

√
π

kρ
F(℘)

}
, (66b)

where F is defined in (56a). If we adhere to Remark 3, we expect that (66b) should not

manifest the contribution, H
(1)
1 (keρ), of the residue at the pole λ = ke.

26 To demonstrate its

elimination for large enough distances in this component, we use the asymptotic expansion31

H
(1)
ν (z) ∼

√
2/(πz) ei(z−νπ/2−π/4), which provides a reasonable approximation for H

(1)
ν (keρ)

for all but small values of |keρ|. Recall that
√
k2
e − k2 = −iωµ0σ/2 if ke does not lie on the
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top Riemann sheet of
√
k2 − λ2. Thus, for sufficiently large |keρ| ∼ |kρ|, (66b) becomes

B
(hd)
2z =

iµ0

8π
sinφ

{
−2i

(
1

ρ2
− ik

ρ

)
eikρ + ωµ0σk

√
π

kρ
eikρF(℘)

}
, (66c)

which manifests the eikρ-wave behavior in view of (56b); see Appendix B. In contrast, by

the hypothetical scenario when ke lies in the physical (top) λ-Riemann sheet, (66b) yields

B
(hd)
2z =

iµ0

8π
sinφ

{
−2i

(
1

ρ2
− ik

ρ

)
eikρ + ωµ0σk

√
2π

kρ
ei(keρ−π/4)

− ωµ0σk

√
π

kρ
eikρF(℘)

}
, (66d)

in view of Remark 2.

In regard to the ρ-component of the electric field, formula (42) entails

E
(hd)
2ρ = −ωµ0

4π
cosφ

{[
−i
(

1− k2

k2
m

)
1

ρ
+

(
1− k2

k2
e

− k2

k2
m

)
1

kρ2

]
eikρ

+ iπ
ωµ0σ

4keρ
H

(1)
1 (keρ)− i

√
k2
e − k2

keρ

√
π eikρ

×
∞∑
l=0

(
1

2

)
l

1 + 2l

1− 2l

(i/2)l

l!

(
ke − k
ke

)l+1/2

ei℘
dl

dzl
[
z−1/2F0(z)

]∣∣∣∣
z=℘

− 2πi
k2

(ωµ0σ)2

[
2k2

ωµ0σ
− i
√
k2
m − k2

]
H

(1)′
1 (kmρ) + i

4k2 km
(ωµ0σ)2

αm

[
−π

2

(
H′1(kmρ)

− Y ′1(kmρ)
)

+
k

km

∞∑
l=0

(
1

2

)
l

(−1)l+1

l!

(
k2

k2
m

)l+1
d2l+2

dζ2l+2

(
1− eiζ
ζ

)∣∣∣∣
ζ=kρ

]}
, (67a)

where the prime denotes derivative with respect to the argument and H′1(z) = 1
2
[H0(z) −

H2(z)] + Γ(5/2)−1(4
√
π)−1z. By imposing |ωµ0σ| � |k| under Remark 3, we keep one term

from each of the above series expansion and find

E
(hd)
2ρ ∼ −

ωµ0

4π
cosφ

{
−2

(
1

kρ2
+

i

k2ρ3

)
eikρ

+ iπ
ωµ0σ

4kρ

[
H

(1)
1 (keρ)−

√
2

πkeρ
ei(keρ−3π/4)

]
+
ωµ0σ

2kρ

√
π

kρ
eikρF(℘)

− iπ 8k4

(ωµ0σ)3
H

(1)′
1 (kmρ) +

4k4

(ωµ0σ)3

[
π
(
H′1(kmρ)− Y ′1(kmρ)

)
+

4

(kmρ)3

]}
. (67b)

The primary field of the dipole is singled out in the first line of formula (67b), while the

remaining terms of this formula express the scattered wave; see Appendix B. In the scattered
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wave, there are two noteworthy contributions. The TM surface plasmon contribution is

expressed by the term proportional to H
(1)′
1 (kmρ). The other contribution, H

(1)
1 (keρ), is

cancelled out for large enough |keρ| in a fashion similar to that shown for B
(hd)
2z above.

By (43), we likewise obtain the exact formula

E
(hd)
2φ =

ωµ0

4π
sinφ

{[
k

k2
e

(
1 +

4k2k2
e

k2
m(ωµ0σ)2

)
1

ρ2
− ik2

k2
e

1

ρ

]
eikρ

+
iπ

4
ωµ0σH

(1)′
1 (keρ) +

√
k2
e − k2

√
π eikρ

×
∞∑
l=0

(
1

2

)
l

3 + 4l2

(1− 2l)(3− 2l)

(i/2)l

l!

(
ke − k
ke

)l+1/2

ei℘
dl

dzl
[
z−1/2F0(z)

]∣∣∣∣
z=℘

− 2πik2

(ωµ0σ)2

(
2k2

ωµ0σ
− i
√
k2
m − k2

)
H

(1)
1 (kmρ)

kmρ
+

4ik2

(ωµ0σ)2

αm
ρ

[
1− π

2

(
H1(kmρ)

− Y1(kmρ)
)

+
∞∑
l=0

(
1

2

)
l

(−1)l+1

l!

(
k2

k2
m

)l+1
d2l+1

dζ2l+1

(
1− eiζ
ζ

)∣∣∣∣
ζ=kρ

]}
. (68a)

By Remark 3 and |ωµ0σ| � |k|, this formula is simplified to

E
(hd)
2φ ∼

ωµ0

4π
sinφ

{(
− i
ρ

+
1

kρ2
+

i

k2ρ3

)
eikρ

+
iπ

4
ωµ0σ

[
H

(1)′
1 (keρ)− i

√
2

πkeρ
ei(keρ−3π/4)

]
+
iωµ0σ

2
eikρ
√

π

kρ
F(℘)

− iπ 8k4

(ωµ0σ)3

1

kmρ
H

(1)
1 (kmρ)

− 8k4

(ωµ0σ)3

1

kmρ

[
1− π

2

(
H1(kmρ)− Y1(kmρ)

)
+

1

(kmρ)2

]}
. (68b)

In the first line of approximate formula (68b), we display the radiation field in the absence

of the layer. The additional terms of this formula account for the scattered field. See

Appendix B for alternate computations based on asymptotics.
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By (45), the ρ-component of the magnetic field reads

B
(hd)
2ρ =

µ0

4π
sinφ

{[
−
(
ωµ0σ

2

k

k2
e

+
2k3

ωµ0σ

1

k2
m

)
1

ρ2
+
iωµ0σ

2

k2

k2
e

1

ρ

]
eikρ

+ iπ
2k4

(ωµ0σ)2

1

kmρ

[
1− iωµoσ

2k2

√
k2
m − k2

]
H

(1)
1 (kmρ)− 2ik2

ωµ0σ

αm
ρ

×
[

1− π

2

(
H1(kmρ)− Y1(kmρ)

)
+
∞∑
l=0

(
1

2

)
l

(−1)l+1

l!

(
k2

k2
m

)l+1
d2l+1

dζ2l+1

(
1− eiζ
ζ

)∣∣∣∣
ζ=kρ

]
− iπ

8
(ωµ0σ)2H

(1)′
1 (keρ)− ωµ0σ

2

√
k2
e − k2

√
π eikρ

×
∞∑
l=0

(
1

2

)
l

3 + 4l2

(1− 2l)(3− 2l)

(i/2)l

l!

(
ke − k
ke

)l+1/2

ei℘
dl

dzl
[
z−1/2F0(z)

]∣∣∣∣
z=℘

}
. (69a)

By Remark 3 and condition |ωµ0σ| � |k|, the last expression becomes

B
(hd)
2ρ ∼

µ0

4π
sinφ

{
ωµ0σ

2

(
i

ρ
− 1

kρ2
− i

k2ρ3

)
eikρ

+ iπ
4k4

(ωµ0σ)2

1

kmρ
H

(1)
1 (kmρ)− i 2k2

ωµ0σ

1

ρ

[
1− π

2

(
H1(kmρ)− Y1(kmρ)

)
+

1

(kmρ)2

]

− iπ

8
(ωµ0σ)2

[
H

(1)′
1 (keρ)−

√
2

πkeρ
ei(keρ−π/4)

]
− i(ωµ0σ)2

4

√
π

kρ
eikρF(℘)

}
; (69b)

see Appendix B for alternate derivations of the far and near field.

We conclude this section with the computation of the φ-component of the magnetic field.

By (46), we obtain

B
(hd)
2φ =

µ0

4π
cosφ

{[(
ωµ0σ

2

k

k2
e

+
2k3

ωµ0σ

1

k2
m

)
1

ρ2
− i 2k4

ωµ0σ

1

k2
mρ

]
eikρ

+ iπ
k2

ωµ0σ

(
2k2

ωµ0σ
− i
√
k2
m − k2

)
H

(1)′
1 (kmρ)− i2k

2km
ωµ0σ

αm

[
−π

2

(
H′1(kmρ)

− Y ′1(kmρ)
)

+
k

km

∞∑
l=0

(
1

2

)
l

(−1)l+1

l!

(
k2

k2
m

)l+1
d2l+2

dζ2l+2

(
1− eiζ
ζ

)∣∣∣∣
ζ=kρ

]

− iπ

8

(ωµ0σ)2

keρ
H

(1)
1 (keρ) +

iωµ0σ

2

√
k2
e − k2

keρ

×√π eikρ
∞∑
l=0

(
1

2

)
l

1 + 2l

1− 2l

(i/2)l

l!

(
ke − k
ke

)l+1/2

ei℘
dl

dzl
[
z−1/2F0(z)

]∣∣∣∣
z=℘

}
. (70a)
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Suppose that |ωµ0σ| � |k|. By Remark 3, the preceding formula is reduced to

B
(hd)
2φ ∼

µ0

4π
cosφ

{
ωµ0σ

(
1

kρ2
+

i

k2ρ3

)
eikρ

+ iπ
4k4

(ωµ0σ)2
H

(1)′
1 (kmρ)− 4k4

(ωµ0σ)2

[
π

2

(
H′1(kmρ)− Y ′1(kmρ)

)
+

2

(kmρ)3

]

− iπ

8

(ωµ0σ)2

keρ

[
H

(1)
1 (keρ)−

√
2

πkeρ
ei(kρ−3π/4)

]
− (ωµ0σ)2

4

1

kρ

√
π

kρ
eikρF(℘)

}
.

(70b)

In Appendix B, we compute this field component by asymptotic methods, in the near-

(|kmρ| � 1) and far-field (|kρ| � 1) regimes for |ωµ0σ| � |k|; the results are in agreement

with (70b).

V. DISCUSSION

In this section, we discuss the derived formulas of Section IV under Remark 3 in the case

with |kmρ| � 1 and kρ = O(1), by assuming that |ωµ0σ| � |k|. An issue that we address

is the relative strength of the TM surface plasmon contribution to the electromagnetic

field. A practical consideration that motivates this study is that layers of two-dimensional

materials such as graphene may sustain a TM surface plasmon wave number, km, with

0 < =km � <km and <km ∼ |km| � |k| at a certain accessible frequency range;17 thus, the

wavelength of the generated surface plasmon can be much smaller than the wavelength of

the incident electromagnetic field in free space. It is of interest to investigate how the TM

surface plasmon can prevail over other field contributions on the layer at distances of the

order of the free-space wavelength.

A. Field of vertical dipole, |kmρ| � 1 and kρ = O(1)

By (62b), the ρ-component of the electric field reduces to

E
(vd)
1ρ ∼

ωµ0

2π

{
ωµ0σ

4

(
3

k4ρ4
− 3i

k3ρ3
− 1

k2ρ2

)
eikρ +

4k4

(ωµ0σ)3

√
2π

kmρ
ei(kmρ−π/4)

}
, (71)
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if |kmρ| � 1, by use of asymptotic expansions (54) and H
(1)
ν (z) ∼

√
2/(πz)ei(z−νπ/2−π/4) as

z →∞ with ν = 1. Hence, the TM surface plasmon dominates in this regime if∣∣∣∣ωµ0σ

k

∣∣∣∣� e−(2/7)=km/|k| . (72)

In the same vein, by (63) we compute the φ-component of the magnetic field:

B
(vd)
1φ ∼ −

iµ0k
2

4π

{(
i

k2ρ2
+

1

kρ

)
eikρ − 8k2

(ωµ0σ)2

√
π

2kmρ
ei(kmρ+π/4)

}
. (73)

Evidently, the TM surface plasmon contribution dominates in this component if∣∣∣∣ωµ0σ

k

∣∣∣∣� e−(2/3)=km/|k| . (74)

Equation (64) for the z-component of the electric field yields

E
(vd)
1z ∼ −

ωµ0k

4π

{(
i

k3ρ3
+

1

k2ρ2
− i

kρ

)
eikρ − 8k3

(ωµ0σ)3

√
2π

kmρ
ei(kmρ+π/4)

}
, (75)

which implies that the TM surface plasmon is dominant if∣∣∣∣ωµ0σ

k

∣∣∣∣� e−(2/5)=km/|k| . (76)

Thus, for kρ = O(1) the TM surface plasmon dominates in all field components of the

vertical dipole if (74) holds.

B. Field of horizontal dipole, |kmρ| � 1 and kρ = O(1)

First, we address the z-components. By (65b), the z-component of the electric field reads

E
(hd)
2z ∼

ωµ0

2π
cosφ

{
−ωµ0σ

4

(
1

k2ρ2
+

3i

k3ρ3
− 3

k4ρ4

)
eikρ+

4k4

(ωµ0σ)3

√
2π

kmρ
ei(kmρ−π/4)

}
. (77)

For kρ = O(1), the pole contribution dominates under condition (72). In contrast, by (66)

the z-component of the magnetic field does not carry any TM surface plasmon contribution;

thus, we omit its evaluation from this discussion.

The remaining components are more richly structured. By (67b), we have

E
(hd)
2ρ ∼ −

ωµ0k

4π
cosφ

{
−2

(
1

k2ρ2
+

i

k3ρ3

)
eikρ − 8k3

(ωµ0σ)3

√
2π

kmρ
ei(kmρ+π/4)

+
iπ

4

ωµ0σ

k

1

kρ

[
H

(1)
1 (keρ)−

√
2

πkeρ
ei(keρ−3π/4)

]
+
ωµ0σ

2k

1

kρ

√
π

kρ
eikρF(℘)

}
. (78)
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If kρ = O(1), all terms in the second line are relatively small. The residue contribution of

the pole at km dominates over the primary field if (76) holds.

Equation (68b) for the φ-component of the electric field gives

E
(hd)
2φ ∼

ωµ0k

4π
sinφ

{(
− i

kρ
+

1

k2ρ2
+

i

k3ρ3

)
eikρ − 8k3

(ωµ0σ)3

1

kmρ

√
2π

kmρ
ei(kmρ−π/4)

+
iπ

4

ωµ0σ

k

[
H

(1)′
1 (keρ)− i

√
2

πkeρ
ei(keρ−3π/4)

]
+
iωµ0σ

2k
eikρ
√

π

kρ
F(℘)

}
, (79)

which is dominated by the TM surface plasmon at distances with kρ = O(1) provided (74)

holds.

We now focus on the components of the magnetic field. By (69b), we compute

B
(hd)
2ρ ∼

µ0k
2

4π
sinφ

{
ωµ0σ

2k

(
i

kρ
− 1

k2ρ2
− i

k3ρ3

)
eikρ +

4k2

(ωµ0σ)2

1

kmρ

√
2π

kmρ
ei(kmρ−π/4)

− iπ

8

(ωµ0σ)2

k2

[
H

(1)′
1 (keρ)−

√
2

πkeρ
ei(keρ−π/4)

]
− i(ωµ0σ)2

4k2

√
π

kρ
eikρF(℘)

}
. (80)

All terms of the second line are negligible; in contrast, the TM surface plasmon can dominate

over the eikρ-wave of the first line under (74). Similarly, formula (70b) is reduced to

B
(hd)
2φ ∼

µ0k
2

4π
cosφ

{
ωµ0σ

k

(
1

k2ρ2
+

i

k3ρ3

)
eikρ +

4k2

(ωµ0σ)2

√
2π

kmρ
ei(kmρ+π/4)

− iπ

8

(ωµ0σ)2

k2

1

kρ

[
H

(1)
1 (keρ)−

√
2

πkeρ
ei(keρ−3π/4)

]
− (ωµ0σ)2

4k2

eikρ

kρ

√
π

kρ
F(℘)

}
,

(81)

which suggests the dominance of the TM surface plasmon if (76) holds.

Therefore, on the basis of the approximate formulas of Sections V A and V B, we reach

the following conclusion.

Proposition 1 (On dominance of TM surface plasmon contribution). Suppose that the

pole at λ = km is present in the top λ-Riemann sheet; and |ωµ0σ| � |k| which amounts to

ζ̆ := |σ|
√
µ0/|ε̃| � 1, where k = ω

√
µ0ε̃. Then, the TM surface plasmon is dominant at

distances ρ of the order of the wavelength in free space if condition (74) holds. In particular,

if k > 0 (ε̃ > 0) and arg σ = π/2− δ, 0 < δ < π/2, condition (74) reads

ζ̆ � exp

(
− 4

3ζ̆
sin δ

)
. (82)
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VI. CONCLUSION

In this paper, we computed by analytical means the electromagnetic field of a vertical

and a horizontal dipole located near a thin film with scalar, complex conductivity, σ, inside

an unbounded medium of wave number k. This setting provides a minimal yet nontrivial

model of wave propagation on a two-dimensional material such as a graphene sheet.

Our starting point was the Fourier-Bessel representation, or Sommerfeld-type integrals,

for all field components. In the particular case when both the dipole and the observation

point lie on the layer, we showed that the fields can be expressed in terms of geometrically

convergent series and known transcendental functions such as the Fresnel integrals, and the

Bessel and Struve functions. We simplified this result considerably when |ωµ0σ| � |k| and

derived analytic formulas that hold for practically all distances, ρ, from the source. These

formulas connect smoothly the near field with the far field of the dipole, as we verified via

independent asymptotic evaluation of the requisite integral representations. Our treatment

provides an analytical description of a particular case of the dyadic Green function associated

with the geometry of the conducting film; and can expand insights obtained from previous

numerical or semi-analytical approaches for related problems.7,8,27

Depending on the frequency ω and the parameters σ and k, the electromagnetic field of

the dipole may manifest a contribution from a pole analogous to the TM surface plasmon

of plane waves.3 We demonstrated explicitly how this contribution may be manifest or

suppressed in each relevant component of the electromagnetic field for all distances from the

dipole source.

The present work admits several extensions and also points to pending issues. For ex-

ample, we have not computed the field components at points away from the film; this task

would require an elaborate asymptotic evaluation of the requisite Fourier-Bessel integrals

by imposing some restriction on |z|. The possible anisotropy of the thin-film material, e.g.,

black phosphorus,39 where σ is a tensor, deserves attention; this anisotropy dramatically

affects the dispersion relations for surface plasmons and the analytic structure of the elec-

tromagnetic field produced by current-carrying sources. Another problem is the excitation

of surface plasmons by a resonant receiving antenna placed on the material sheet,17 which

requires solving an integral equation for the associated current distribution; this task is left

for future work.
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Appendix A: On the normal field components

In this appendix, we discuss the conditions on the field components normal to the plane,

z = 0, of the film. Such boundary conditions were not explicitly invoked in the derivation

of the Fourier-Bessel integral representations (Section III).

First, we describe the (effective) surface charge density of the film which produces a jump

of the normal component, ε̃jEjz, of the electric displacement field Dj = ε̃jEj. By (4b), the

thin layer bears the surface current density Js = σE‖ = σ{Ej − (Ej · ez)ez} at z = 0, which

by the continuity equation is associated with the surface charge density

%s(x, y) = −(i/ω)∇s · Js
∣∣
z=0

= −(iσ/ω)∇s · E‖
∣∣
z=0

; ∇s = ∇− (∇ · ez)ez .

By Gauss’ law in region j, ∇s ·E‖ = −∂Ejz/∂z for (x, y, z) 6= (0, 0, a); allowing z to approach

0 from region j, we conclude that the normal derivative, ∂Ejz/∂z, of Ejz is continuous across

z = 0. Thus,

%s =
iσ

ω

∂E1z

∂z

∣∣∣∣
z=0+

=
iσ

ω

∂E2z

∂z

∣∣∣∣
z=0−

, (A1)

where writing z = 0+ (z = 0−) implies that z = 0 is approached from above (below).

The boundary conditions for the normal field components consist of: (i) the jump of

the z-component of the electric displacement field due to %s; and (ii) the continuity of the
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z-component of the magnetic field. Accordingly, we write

[k2
jEjz] :=(k2

1E1z − k2
2E2z)|z=0 = ω2µ0 %s = iωµ0σ

∂Ejz
∂z

∣∣∣∣
z=0

, (A2a)

[Bjz] :=(B1z −B2z)|z=0 = 0 . (A2b)

Next, we proceed to demonstrate that (A2) are satisfied by the integral representations

of Section III for an elevated dipole (a > 0), as expected.

1. Vertical dipole

By differentiation in z of (14b) for 0 < z < a and (16b) for z < 0, we obtain

∂E1z

∂z

∣∣∣∣
z=0+

=
iωµ0

2π

∫ ∞
0

dλλ3 J0(λρ)
β2(λ)

P(λ)
eiβ1a =

∂E2z

∂z

∣∣∣∣
z=0−

, (A3)

which shows the continuity of the normal derivative of Ejz. On the other hand, we compute

[k2
jEjz] = −ωµ0

4π

∫ ∞
0

dλ
λ3

β1

J0(λρ)

(
1 +

k2
2β1 − k2

1β2 + ωµ0σβ1β2

k2
2β1 + k2

1β2 + ωµ0σβ1β2

)
eiβ1a

+
ωµ0

2π

∫ ∞
0

dλλ3 J0(λρ)
k2

2

k2
2β1 + k2

1β2 + ωµ0σβ1β2

eiβ1a

= −ωµ0

2π
(ωµ0σ)

∫ ∞
0

dλλ3 J0(λρ)
β2

P eiβ1a ,

which, by (A3), is equal to iωµ0σ(∂Ejz/∂z) at z = 0. Thus, condition (A2a) is satisfied.

Note that (A2b) is trivially satisfied in this case because Bjz ≡ 0.

2. Horizontal dipole

By differentiating (24c) and (26c), we verify that ∂Ejz/∂z is continuous across z = 0:

∂E1z

∂z

∣∣∣∣
z=0+

= −ωµ0

2π
cosφ

∫ ∞
0

dλλ2 J1(λρ)
β1β2

P eiβ1a =
∂E2z

∂z

∣∣∣∣
z=0−

. (A4)

On the other hand, the jump of k2
jEjz is equal to

[k2
jEjz] =

iωµ0

4π
cosφ

∫ ∞
0

dλλ2 J1(λρ)

(
k2

1β2 − k2
2β1 − ωµ0σβ1β2

k2
1β2 + k2

2β1 + ωµ0σβ1β2

− 1

)
eiβ1a

+
iωµ0

2π
cosφ

∫ ∞
0

dλλ2 J1(λρ)
k2

2β1

k2
1β2 + k2

2β1 + ωµ0σβ1β2

eiβ1a ,

36



which, after elementary algebra, is equal to iωµ0σ(∂Ejz/∂z) at z = 0; cf. (A4).

We now turn our attention to Bjz. By (25c), as z ↓ 0 (with 0 < z < a) we obtain

B1z|z=0+ =
iµ0

4π
sinφ

∫ ∞
0

dλλ2 J1(λρ)
1

β1

(
1− β2 − β1 + ωµ0σ

β2 + β1 + ωµ0σ

)
eiβ1a ,

which is equal to B2z at z = 0− by (27c). This shows the expected validity of (A2b).

Appendix B: Asymptotic evaluation of Sommerfeld-type integrals

In this appendix, we derive the near- and far-field of each dipole by asymptotic evaluation

of the Sommerfeld-type integrals under |ωµ0σ| � |k|. The results of these calculations are

compared to the exact formulas of Section IV C. We assume that the pole at λ = km is

present in the physical Riemann sheet throughout this appendix (see Remarks 1–3).

In the following analysis, we will need the relations31

J0(z) + J2(z) =
2

z
J1(z) , J0(z)− J2(z) = 2 J ′1(z) , (B1)

along with the leading-order asymptotic formula31

Jν(z) ∼
√

2

πz
cos(z − νπ/2− π/4) as |z| → ∞ , | arg z| < π . (B2)

In addition, we will make use of the following result from Ref. 26.

Lemma B.1 (On the Fresnel integrals). The integral

I :=

∫ ∞
−∞

dτ
ei(ke−k)ρτ

√
τ(ωµ0σ + i2

√
2k
√
ke − k

√
τ)

=
π√

k
√
ke − k

eiπ/4F(℘0) , (B3)

where
√
τ > 0 for τ > 0, F(z) is defined in (56a), and ℘0 = −(ωµ0σ)2ρ/(8k) [see (36)

and (58)].

Proof. By Ref. 26, first write

I =

∫ ∞
0

dτ
ei(ke−k)ρτ

√
τ(ωµ0σ + i2

√
2k
√
ke − k

√
τ)

+

∫ ∞
0

dτ
e−i(ke−k)ρτ

−i√τ(ωµ0σ + 2
√

2k
√
ke − k

√
τ)

.

Then, apply τ 7→ ς with
√
ς = 2i

√
2k
√
ke − k(ωµ0σ)−1

√
τ to find

I =
i

2
√

2k
√
ke − k

I0(℘0) ,
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where

I0(z) = −
∫ ∞

0

dς
eizς√

ς(
√
ς + 1)

+

∫ ∞
0

dς
e−izς√
ς(
√
ς + i)

.

This I0(z) satisfies

dI0

dz
− iI0(z) = −2e−iπ/4

√
π

z
, lim

z→+∞
I0(z) = 0 , (B4)

with solution I0(z) = 2π
√

2 e−iπ/4F(z), which concludes the proof. �

1. Far field: |kρ| � 1 with |ωµ0σ| � |k|

In this regime, the major contribution to integration in the Sommerfeld-type integrals

comes from the singularities at λ = k and λ = km. The Bessel functions in all integrands

are expressed in terms of Jν(λρ) for ν = 0, 1 by use of (B1); Jν(λρ) is in turn replaced by

its large-argument approximation according to (B2).

a. Field of vertical dipole on film

Taking the limit as a ↓ 0 with 0 < z < a of (14a) and then invoking (B2) readily yield

E1ρ = −iωµ0

2π

∫ ∞
0

dλ λ2 J1(λρ)
1

2k2 + ωµ0σ
√
k2 − λ2

|kρ|�1∼ −iωµ0

4π

∫ ∞
−∞

dλ λ2

√
2

πλρ

1

2k2 + ωµ0σ
√
k2 − λ2

ei(λρ−3π/4) . (B5)

In this integral, we single out the contributions from the simple pole at λ = km and the

branch point at λ = k, viz.,

E
(vd)
1ρ ∼ −

iωµ0

4π

{
2πi k2

m

√
2

πkmρ
ei(kmρ−3π/4) lim

λ→km

[
2k2 − ωµ0σ

√
k2 − λ2

(ωµ0σ)2(2λ)

]

+ ik3

∫ ∞
0

dτ (1 + iτ)2

[
1

2k2 − e−iπ/4 ωµ0σk
√
τ
√

2 + iτ
− 1

2k2 + e−iπ/4 ωµ0σk
√
τ
√

2 + iτ

]

×
√

2

πkρ(1 + iτ)
ei(kρ−3π/4) e−kρτ

}
,

where for the last integral we appropriately deformed the integration path in the upper

λ-half-plane, set λ = k(1 + iτ) and integrated on each side of the positive real τ -axis. The

major contribution to integration comes from the vicinity of τ = 0 with width O((kρ)−1);
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the corresponding integrand yields a term of the order of ωµ0σ/k. By enforcing the condition

|ωµ0σ| � |k|, we reduce the preceding formula for E
(vd)
1ρ to

E
(vd)
1ρ ∼

iωµ0k

4π

{
k3
m

k3

√
2π

kmρ
ei(kmρ−π/4)

− i ωµ0σ

2k

√
2e−iπ/4

√
2

πkρ
ei(kρ−3π/4)

∫ ∞
0

dτ
√
τ e−kρτ

}

=
iωµ0k

4π

{
k3
m

k3

√
2π

kmρ
ei(kmρ−π/4) +

iωµ0σ

2k

eikρ

k2ρ2

}
, (B6)

in agreement with (62b) which comes from the exact series expansion for this component.

In the same vein, by (14b) and asymptotic formula (B2) for ν = 0 we have

E
(vd)
1z = − ωµ0

2πk2

∫ ∞
0

dλ J0(λρ)
λ3

√
k2 − λ2

k2 + ωµ0σ
√
k2 − λ2

2k2 + ωµ0σ
√
k2 − λ2

|kρ|�1∼ − ωµ0

4πk2

∫ ∞
−∞

dλ
λ3

√
k2 − λ2

k2 + ωµ0σ
√
k2 − λ2

2k2 + ωµ0σ
√
k2 − λ2

√
2

πλρ
ei(λρ−π/4) . (B7)

By singling out the contributions from two singular points, at λ = km and λ = k, and

additionally imposing |ωµ0σ| � |k|, after some algebra we find

E
(vd)
1z ∼

ωµ0

4π

{
2πi

4k4

(ωµ0σ)3

√
2

πkmρ
ei(kmρ−π/4)

− ik2

∫ ∞
0

dτ

√
2

πkρ(1 + iτ)
(1 + iτ)3ei(kρ−π/4) e−(kρ)τ

[
1

−e−iπ/4 k
√

2 + iτ
√
τ

× k2 − e−iπ/4 ωµ0σk
√
τ
√

2 + iτ

2k2 − e−iπ/4 ωµ0σk
√
τ
√

2 + iτ
− 1

e−iπ/4 k
√

2 + iτ
√
τ

× k2 + e−iπ/4 ωµ0σk
√
τ
√

2 + iτ

2k2 + e−iπ/4 ωµ0σk
√
τ
√

2 + iτ

]

∼ ωµ0k

4π

{
8πi

k3

(ωµ0σ)3

√
2

πkmρ
ei(kmρ−π/4) +

i

kρ
eikρ

}
, (B8)

by expanding the integrand at τ = 0. The preceding result is in agreement with (64) of the

exact solution for |ωµ0σ| � |k| and |kρ| � 1. By a similar computation, (15) yields

B
(vd)
1φ =

iµ0

2π

∫ ∞
0

dλ J1(λρ)
λ2

√
k2 − λ2

k2 + ωµ0σ
√
k2 − λ2

2k2 + ωµ0σ
√
k2 − λ2

|kρ|�1∼ iµ0

4π

∫ ∞
−∞

dλ
λ2

√
k2 − λ2

k2 + ωµ0σ
√
k2 − λ2

2k2 + ωµ0σ
√
k2 − λ2

√
2

πλρ
ei(λρ−3π/4)

|ωµ0σ|�|k|∼ − iµ0k
2

4π

{
4π

k2

(ωµ0σ)2

√
2

πkmρ
ei(kmρ−3π/4) +

1

kρ
eikρ

}
, (B9)
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which, alternatively, results from (63) of the exact solution if |ωµ0σ| � |k| and |kρ| � 1.

b. Field of horizontal dipole on film

In this case, the contribution from the branch point at λ = k should be affected by the

proximity of the pole at λ = ke if |(ke − k)ρ| ≤ O(1). This effect is taken into account via

the integral of Lemma B.1, where (ke − k)ρ ∼ ℘0 enters as a parameter. This situation is

typical in radiowave propagation on the boundary separating media of significantly different

wavenumbers.26

In view of (B1) and (B2), the limit as a ↓ 0 and z ↑ 0 of (26a) yields

E
(hd)
2ρ = −ωµ0

2π
cosφ

∫ ∞
0

dλ

{
1

ρ
J1(λρ)

1

2
√
k2 − λ2 + ωµ0σ

+ λJ ′1(λρ)

√
k2 − λ2

2k2 + ωµ0σ
√
k2 − λ2

}
|kρ|�1∼ −ωµ0

4π
cosφ

{∫ ∞
−∞

dλ
1

ρ

√
2

πλρ
ei(λρ−3π/4) 1

2
√
k2 − λ2 + ωµ0σ

+

∫ ∞
−∞

dλ iλ

√
2

πλρ
ei(λρ−3π/4)

√
k2 − λ2

2k2 + ωµ0σ
√
k2 − λ2

}
. (B10)

There is only one residue contribution, E
(hd)
2ρ,km

, to this component, which comes from the

last integral and concerns the simple pole at λ = km:

E
(hd)
2ρ,km

∼ −ωµ0

4π
cosφ 2πi

{
ikm

√
2

πkmρ
ei(kmρ−3π/4)

√
k2 − k2

m lim
k→km

[
2k2 − ωµ0σ

√
k2 − λ2

(ωµ0σ)2 (2λ)

]}
.

The contribution from the branch point at λ = k is singled out as

E
(hd)
2ρ,k ∼ −

ωµ0

4π
cosφ ei(kρ−3π/4)

√
2

πkρ

{
ke − k
ρ

∫ ∞
−∞

dτ ′
(

1 +
ke − k
k

τ ′
)−1/2

ei(ke−k)ρτ ′

× 1

2i
√

2k
√
ke − k

√
1 + ke−k

2k
τ ′
√
τ ′ + ωµ0σ

+ (ik)2

∫ ∞
0

dτ
√

1 + iτ e−(kρ)τ

×
[

−e−iπ/4 k
√

2 + iτ
√
τ

2k2 − e−iπ/4 ωµ0σk
√

2 + iτ
√
τ
− e−iπ/4 k

√
2 + iτ

√
τ

2k2 + e−iπ/4 ωµ0σk
√

2 + iτ
√
τ

]}
.

For the first integral above, we have set λ = k + (ke − k)τ ′; whereas for the second integral

we deformed the path in the upper λ-half-plane and then set λ = k(1+iτ) as before. In each

of the transformed integrals, the major contribution arises from a small neighborhood of the

origin. The value of the first integral crucially depends on which term in its denominator
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prevails when (ke − k)ρτ ′ = O(1); by this interplay, the parameter ℘0 emerges naturally. In

contrast, in the second integral such interplay is not present; one may simply Taylor-expand

the integrand in powers of ωµ0σ/k and keep the leading-order term. To subtract the primary

field contribution in the first integral, we split each term, evaluated near τ ′ = 0, as

1

2i
√

2k
√
ke − k

√
τ ′ + ωµ0σ

=
1

2i
√

2k
√
ke − k

√
τ ′
− ωµ0σ

2i
√

2k
√
ke − k

√
τ ′
(
2i
√

2k
√
ke − k

√
τ ′ + ωµ0σ

)
and carry out the integration without further approximations for these terms. Thus, we find

E
(hd)
2ρ,k

|ωµ0σ|�|k|∼ −ωµ0

4π
cosφ

{
− 2

kρ2
eikρ − ke − k

ρ

ωµ0σ

2i
√

2k
√
ke − k

√
2

πkρ
ei(kρ−3π/4) I

}
,

where I is given in Lemma B.1. Thus, by E
(hd)
2ρ ∼ E

(hd)
2ρ,km

+ E
(hd)
2ρ,k we compute

E
(hd)
2ρ ∼ −

ωµ0

4π
cosφ

{
8 k4

(ωµ0σ)3

√
2π

kmρ
ei(kmρ−3π/4) − 2eikρ

kρ2
+
ωµ0σ

2kρ

√
π

kρ
eikρF(℘0)

}
, (B11)

which is in agreement with (67b) for |kρ| � 1.

The remaining components can be approximately computed by the same methodology,

although the algebraic details are different in each case. By (26b), we have

E
(hd)
2φ =

ωµ0

2π
sinφ

∫ ∞
0

dλ

{
λ J ′1(λρ)

1

2
√
k2 − λ2 + ωµ0σ

+
1

ρ
J1(λρ)

√
k2 − λ2

2k2 + ωµ0σ
√
k2 − λ2

}
|kρ|�1∼ ωµ0

4π
sinφ

{∫ ∞
−∞

dλ iλ

√
2

πλρ
ei(λρ−3π/4) 1

2
√
k2 − λ2 + ωµ0σ

+

∫ ∞
−∞

dλ
1

ρ

√
2

πλρ
ei(λρ−3π/4)

√
k2 − λ2

2k2 + ωµ0σ
√
k2 − λ2

}
. (B12)

By separating the pole and branch-point contributions, we find

E
(hd)
2φ

|ωµ0σ|�|k|∼ ωµ0

4π
sinφ

{
− 8πik4

(ωµ0σ)3

1

kmρ

√
2

πkmρ
ei(kmρ−3π/4) + i

(
− 1

ρ
+

1

k2ρ3

)
eikρ

− ωµ0σ

2
√

2

√
ke − k

√
k

√
2

πkρ
ei(kρ−3π/4) I

}
, (B13)

which, by Lemma B.1, is in agreement with (68b) if |kρ| � 1. We note in passing that

the eikρ/(k2ρ3) term in the first line of (B13) arises from the (TM-polarization) integral

containing (2k2 +ωµ0σ
√
k2 − λ2)−1, is small compared to eikρ/ρ in this far-field regime and,

thus, should be dropped to leading order in kρ.
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By (26c), the z-component of the electric field does not contain any TE polarization term

and thus lacks the Fresnel integrals. By similar asymptotics, we reach the following result.

E
(hd)
2z = −iωµ0

2π
cosφ

∫ ∞
0

dλλ2 J1(λρ)
1

2k2 + ωµ0σ
√
k2 − λ2

|kρ|�1∼ −iωµ0

4π
cosφ

∫ ∞
−∞

dλλ2

√
2

πλρ
ei(λρ−3π/4) 1

2k2 + ωµ0σ
√
k2 − λ2

|ωµ0σ|�|k|∼ −iωµ0

4π
cosφ

{
4πikm

k2

(ωµ0σ)2

√
2

πkmρ
ei(kmρ−3π/4) − iωµ0σ

2

eikρ

k2ρ2

}
; (B14)

cf. (65) from the exact solution, recalling that km ∼ i2k2/(ωµ0σ).

Next, we turn attention to the components of the magnetic field. By (27a), we have

B
(hd)
2ρ =

µ0

2π
sinφ

∫ ∞
0

dλ

{
1

ρ
J1(λρ)

k2

2k2 + ωµ0σ
√
k2 − λ2

+ λJ ′1(λρ)

√
k2 − λ2

2
√
k2 − λ2 + ωµ0σ

}
|kρ|�1∼ µ0

4π
sinφ

{∫ ∞
−∞

dλ
1

ρ

√
2

πλρ
ei(λρ−3π/4) k2

2k2 + ωµ0σ
√
k2 − λ2

−
∫ ∞
−∞

dλ
iλ

2

√
2

πλρ
ei(λρ−3π/4) ωµ0σ

2
√
k2 − λ2 + ωµ0σ

}
; (B15)

in the third line we replaced
√
k2 − λ2/(2

√
k2 − λ2 +ωµ0σ) by 1/2−(ωµ0σ/2)/(2

√
k2 − λ2 +

ωµ0σ) and integrated out the constant. For the first integral, we deform the path in the

upper λ-half-plane, picking up the residue from λ = km, and then evaluate the contribution

from the vicinity of λ = k. For the second integral, we set λ 7→ τ with τ = (λ− k)/(ke − k)

and evaluate the contribution from the vicinity of τ = 0, ending up with Fresnel integrals

via Lemma B.1. Accordingly, we derive the expression

B
(hd)
2ρ ∼

µ0

4π
sinφ

{
4πi k4

(ωµ0σ)2

1

kmρ

√
2

πkmρ
ei(kmρ−3π/4) +

iωµ0σ

2

(
1

ρ
− 1

k2ρ3

)
eikρ

− i(ωµ0σ)2

4

√
π

kρ
eikρF(℘0)

}
; (B16)

the eikρ/(k2ρ3) term in the parenthesis of the first line comes from the TM-polarization

integral and is neglected. The ensuing asymptotic result can also be obtained from (69b) in

the far-field regime, |kρ| � 1.
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In this vein, by (27b) we compute the following expression [cf. (70b)].

B
(hd)
2φ =

µ0

2π
cosφ

∫ ∞
0

dλ

{
λ J ′1(λρ)

k2

2k2 + ωµ0σ
√
k2 − λ2

+
1

ρ
J1(λρ)

√
k2 − λ2

2
√
k2 − λ2 + ωµ0σ

}
|kρ|�1∼ µ0

4π
cosφ

{∫ ∞
−∞

dλ iλ

√
2

πλρ
ei(λρ−3π/4) k2

2k2 + ωµ0σ
√
k2 − λ2

−
∫ ∞
−∞

dλ
1

2ρ

√
2

πλρ
ei(λρ−3π/4) ωµ0σ

2
√
k2 − λ2 + ωµ0σ

}
|ωµ0σ|�|k|∼ µ0

4π
cosφ

{
− 4π k4

(ωµ0σ)2

√
2

πkmρ
ei(kmρ−3π/4) + ωµ0σ

eikρ

kρ2

− (ωµ0σ)2

4

1

kρ

√
π

kρ
eikρF(℘0)

}
. (B17)

Here, the branch-point contribution for each polarization (TE and TM) integral carries a

free-space term proportional to [ωµ0σ/(kρ
2)]eikρ, besides the Fresnel integral contribution.

We conclude this subsection with the approximate computation of the z-component of the

magnetic field by similar means. This component expresses only TE polarization and, thus,

lacks any pole contribution (by Remark 3). By (27c) and similar algebraic manipulations

as above, we find

B
(hd)
2z =

iµ0

2π
sinφ

∫ ∞
0

dλλ2 J1(λρ)
1

2
√
k2 − λ2 + ωµ0σ

|kρ|�1∼ iµ0

4π
sinφ

∫ ∞
−∞

dλλ2

√
2

πλρ
ei(λρ−3π/4) 1

2
√
k2 − λ2 + ωµ0σ

|ωµ0σ|�|k|∼ iµ0k
2

4π
sinφ

{
− 1

kρ
eikρ +

ωµ0σ

2k

√
π

kρ
eikρF(℘0)

}
, (B18)

in agreement with (66c).

2. Near (static) field: |kmρ| � 1 with |ωµ0σ| � |k|

In this case, the major contribution in each Sommerfeld-type integral comes from λ =

O(1/ρ)� |km| � |k|. Thus, we make the approximations

√
k2 − λ2 ∼ iλ , 2k2 + ωµ0σ

√
k2 − λ2 ∼ iλ ωµ0σ , 2

√
k2 − λ2 + ωµ0σ ∼ 2iλ ,

where λ > 0; and exactly evaluate the ensuing integrals containing Jν(λρ).
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a. Vertical dipole

In the limit a ↓ 0 with 0 < z < a, (14a) yields

E
(vd)
1ρ

|kmρ|�1∼ iωµ0

4πk2

i2k2

ωµ0σ

∫ ∞
0

dλλJ1(λρ) = −ωµ0

2π

1

ωµ0σ

1

ρ2
, (B19)

which agrees with (62b) in the regime where |kρ| � |kmρ| � 1 and |ωµ0σ| � |k|. In this

regime, the factor eikρ as well as terms containing the Struve and Neumann functions must

be expanded out in powers of kρ and kmρ;31 after several mutual cancellations, it is found

that the term (kmρ)−2 in the second line of (62b) provides the leading-order contribution.

Likewise, (14b) furnishes the integral

E
(vd)
1z ∼

iωµ0

2πk2

∫ ∞
0

dλλ2 J0(λρ) =
iωµ0

2πk2

1

ρ

∫ ∞
0

dλλ
d

dλ
[λJ1(λ)] = − iωµ0

2πk2

1

ρ3
, (B20)

via integration by parts; this result is in agreement with (64) where the leading-order con-

tribution comes from the last term. The remaining component is provided by (15), which

is reduced to the following expression [cf. (63)].

B
(vd)
1φ ∼

µ0

2π

∫ ∞
0

λ J1(λρ) =
µ0

2π

1

ρ2
. (B21)

b. Horizontal dipole

In the static field of the horizontal dipole, the two types of polarization may provide

contributions of different orders of magnitude. By (26a), we have

E
(hd)
2ρ ∼ −

ωµ0

4π
cosφ

∫ ∞
0

dλλ

{
1

2iλ

[
J0(λρ) + J2(λρ)

]
+

1

ωµ0σ

[
J0(λρ)− J2(λρ)

]}

∼ −ωµ0

4π
cosφ

2

ωµ0σ

∫ ∞
0

dλ
∂

∂ρ
J1(λρ) =

ωµ0

2π
cosφ

1

ωµ0σ

1

ρ2
, (B22)

with dominance of the term pertaining to TM polarization. This result agrees with (67b),

in which H
(1)′
1 (kmρ) and Y ′1(kmρ) provide the leading-order contribution after cancellation

of the O(1/ρ3) terms. By (26b), the φ-component of the electric field is

E
(hd)
2φ ∼

ωµ0

4π
sinφ

∫ ∞
0

dλλ

{
1

2iλ

[
J0(λρ)− J2(λρ)

]
+

1

ωµ0σ

[
J0(λρ) + J2(λρ)

]}

∼ ωµ0

4π
sinφ

1

ωµ0σ

2

ρ

∫ ∞
0

dλ J1(λρ) =
ωµ0

2π
sinφ

1

ωµ0σ

1

ρ2
, (B23)
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in agreement with (68b) where the leading-order term comes from the expansion of

(kmρ)−1H
(1)
1 (kmρ) and (kmρ)−1Y1(kmρ) for |kmρ| � 1 under |ωµ0σ| � |k|. The remaining

component of the electric field is evaluated on the basis of (26c), viz.,

E2z ∼ −
iωµ0

2π
cosφ

1

iωµ0σ

∫ ∞
0

dλλJ1(λρ) = −ωµ0

2π
cosφ

1

ωµ0σ

1

ρ2
. (B24)

This result smoothly connects with (65b) where the leading-order contribution comes from

the (kmρ)−2 term of the second line.

We proceed to the computation of the magnetic field. By (27a), we write

B
(hd)
2ρ ∼

µ0

4π
sinφ

∫ ∞
0

dλλ

{[
J0(λρ) + J2(λρ)

] k2

iλ ωµ0σ
+
[
J0(λρ)− J2(λρ)

]1
2

}

∼ µ0

4π
sinφ

∫ ∞
0

dλ
∂

∂ρ
J1(λρ) = −µ0

4π
sinφ

1

ρ2
. (B25)

This formula also results from (69b); the leading-order term comes from the expansion of

(kmρ)−1H
(1)
1 (kmρ) and (kmρ)−1Y1(kmρ). By (27b), we obtain

B
(hd)
2φ ∼

µ0

4π
cosφ

∫ ∞
0

dλλ

{[
J0(λρ)− J2(λρ)

] k2

iλ ωµ0σ
+
[
J0(λρ) + J2(λρ)

]1
2

}

∼ µ0

4π
cosφ

1

ρ

∫ ∞
0

dλ J1(λρ) =
µ0

4π

cosφ

ρ2
. (B26)

Now compare this approximation to (70b); the latter reduces to the above expression by

expansion in powers of kρ and kmρ. The remaining component of the magnetic field is

B
(hd)
2z ∼

iµ0

2π
sinφ

∫ ∞
0

dλλ2 J1(λρ)
1

2iλ
=
µ0

4π

sinφ

ρ2
. (B27)

This formula manifestly agrees with (66b) if |kρ| � 1 and |ωµ0σ| � |k|.
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