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Abstract. This work presents a hierarchy of mathematical models for describ-
ing the motion of phototaxis, i.e., bacteria that move towards light. Based on
experimental observations, we conjecture that the motion of the colony towards

light depends on certain group dynamics. This group dynamics is assumed to
be encoded as an individual property of each bacterium, which we refer to as
’excitation’. The excitation of each individual bacterium changes based on the
excitation of the neighboring bacteria. Under these assumptions, we derive a

stochastic model for describing the evolution in time of the location of bac-
teria, the excitation of individual bacteria, and a surface memory effect. A
discretization of this model results in an interacting stochastic many-particle
system. The third, and last model is a system of partial differential equations

that is obtained as the continuum limit of the stochastic particle system. The
main theoretical results establish the validity of the new system of PDEs as
the limit dynamics of the multi-particle system.

1. Introduction. Bacteria live in environments that can be often limiting for
growth. As a result, they have evolved sophisticated mechanisms in order to sense
changes in environmental parameters such as light and nutrients. Under certain
conditions, such changes will initiate a motion of an individual bacteria (or even of
an entire colony) in order to increase the resources availability.

In this work we are interested in the motion of Cyanobacteria, that are a lineage
of ancient, ubiquitous photosynthetic microbes. Cyanobacteria track light direction
and quality to optimize conditions for photosynthesis. The motility toward a light
source is called “phototaxis” and requires a photoreceptor, a signal transduction
event, and a motility apparatus. In a series of experiments reported in [7], time-
lapse video microscopy was used to monitor the movement of individual cells and
groups of cells. These movies suggest that in addition to the ability of single cells
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to move directionally, the overall time-evolution is determined by means of a group
dynamics. For example, even when a directional light is continuously present, it
takes a significant time for the cells to initiate a motion towards light. It is also
observed that individual cells are less likely to move towards light while while cells
that are grouped together are more likely to move. Some surface memory effects are
also observed, i.e., it seems to be easier for bacteria to travel on surfaces that were
previously visited by other bacteria. Overall, the various patterns of movement that
we observe appear to be a complex function of cell density, surface properties and
genotype. Almost nothing is known about the nature of the interactions between
these parameters for Cyanobacteria.

In this work we derive several mathematical models for the motion of phototaxis
that take into account certain assumptions about the nature of the group dynamics.
More specifically, we assume that every bacteria has an internal property, which we
refer to as its ’excitation’. The excitation of any bacterium is a time-dependent
quantity that is adjusted based on the excitation of the neighboring bacteria. The
excitation of a bacteria must exceed a pre-determined threshold for it to initiate a
motion in the direction of light.

In that spirit, our first model is a stochastic model in which we track in time the
locations of the individual bacteria, their excitation, and their trajectories in space.
Numerical simulations of this stochastic model show a qualitative behavior that is
similar to the observed experimental data.

Our second model is a stochastic particle model that is obtained from a dis-
cretization of Model I. In this model all three quantities (bacteria, excitation, and
surface) are converted into particles. Rules of motion as well as birth/death rules
for all particles determine their dynamics. In particular, excitation particles are
assumed to move together with their associated bacteria, but since excitation for
any individual bacterium can change in time, excitation particles are allowed to
give birth and die. Finally, our last model, is a continuous model that is written
as a system of PDEs for the evolution of the densities of bacteria, excitation, and
the surface memory effect. Most of this paper deals establishing the limit of the
particle system as the system of PDEs. The techniques we use follow the works of
Oelschläger [14] for reaction-diffusion equations, and of Stevens [18] for chemotaxis.
When compared with the work of Stevens, the inclusion of the “excitation” prop-
erty, does require us to make some additional assumptions and to adjust some of
the estimates.

Over the past several decades, there has been a lot of activity in the mathematical
community in studying mathematical models for chemotaxis (i.e. bacteria that
move in the direction of a chemical attractant), starting the pioneering work of
Patlack [16], and the similar Keller and Segel model [12]. Most of the recent research
efforts concentrate on studying finite-time blowup for the Keller-Segel model or
preventing such a blowup using various regularizations. Since at this point, these
studies have very little connection to the focus of our present work, we do not
provide a list of references. We rather refer the interested reader to the recent work
of Hillen, Painter, and Schmeiser, that contains a comprehensive overview of the
state-of-the-art studies of the Patlack-Keller-Segel model [11].

In spite the interest of the mathematical community in chemotaxis, phototaxis
models are almost nowhere to be found. Few examples include [19] and [21], none
of which considers the group dynamics as a mechanism that is important to the
motion. This paper is the first attempt in that direction. Finally, we note that
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(a) (b)

Figure 1. Bacteria motion when the density is high. The snap-
shots were taken at increasing times. The light comes from the left
of the domain.

we have introduced the stochastic model and its simulations in a recent conference
proceedings [4]. An extensive simulation study of the stochastic model is currently
in progress and is left for a future publication. For completeness we do include in
this paper examples of the numerical simulations that can be obtained using the
stochastic model.

The structure of this paper is as follows: Our first model, the stochastic model,
is introduced in Section 2. The presentation starts with a summary of experimental
observations, proceeds with the mathematical framework, and concludes with nu-
merical simulations. The other two models, the many-particle system, and the limit
system of PDEs are introduced in Section 3. We start with the particle system in
Section 3.1. The densities that will be used in the continuous description are de-
fined in Section 3.2. The dynamics of the particles that is described in Section 3.3.
The formal derivation of the limit dynamics as a system of PDEs is carried out in
Section 3.4. The limit theorems that establish that limit are given in Section 3.5.
Section 4 is devoted to the proof of Theorem 3.2. Concluding remarks are given in
Section 5.

2. A Stochastic Model for Phototaxis.

2.1. Experimental Observations. In [7] Bhaya and Burriesci used time-lapse
video microscopy to track the movement of cells. An analysis of these videos has
led us to the following observations regarding the characteristics of the motion:

1. Delayed motion. Even when the light is on, it will typically take a long amount
of time (minutes to hours) for the bacteria to make a decision to start moving
towards the light. When such a motion is initiated, it always starts in areas
of a high-density of bacteria. Individual bacteria will almost never initiate a
motion towards light.

2. High density motion. When the density of the cells is high, bacteria tend to
move towads the light in one group (see Fig. 1).

3. Fingering. In areas of low-density, bacteria tend to remain still, while when
the density of bacteria is high, cells tend to move faster. Such a “competition”
between the inhomogeneously populated regions results with fingers such as
those that can be seen in Fig. 2. Bacteria that are end up being on the edges
of these fingers stop moving (or move very slowly). In some cases it is even
possible to observe a pinching. This happens when the density of cells is high
enough to form a finger but as the finger is formed and bacteria move towards
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(a) (b)

Figure 2. Creation of fingers with a light source at the upper-
right corner of the domain. Figure (a) shows the edge of the colony
with single cells showing as dark dots. Figures (b) taken several
hours later show the bacteria moving toward the light source.

(a) (b)

Figure 3. Bacteria follow a similar pattern of motion on locations
that were traveled by other bacteria. Shown are snapshots taken
at consecutive times. The light source is from the left.

the light source, the density behind the leading tip decreases. Then, if there
are not enough bacteria present, the tip eventually detaches.

4. A surface memory effect. The movies suggest that when the cells move, they
mark the surface in a way that makes it for other cells more likely to revisit
locations that were already traveled by other bacteria. In the time scales we
are interested in (hours), our observations indicate that this surface memory
effect does not decay at all, or perhaps has a very slow decay rate. Such a
memory effect is demonstrated in Fig. 3.

2.2. The Mathematical Framework. To derive a model that is based on the
observations and assertions above, we need to specify three different stochastic
processes. The first two concern the position of each bacterium and its excitation
at a specific moment in time, while the third process determines the memory effect
of the medium at a specific point in space and time. To that end, we let N denote
the number of bacteria present in a free boundary medium (R2) and denote by
Xi(t) ∈ R

2 the position of bacterium i at time t ≥ 0.
We start by assuming that the first process, L, which denotes the memory surface

effect, is a pure jump process that is given by

L(t;x, y) = max
0≤s≤t

i=1,...,N

δ(x,y)(Xi(s)), (1)
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where δ(x,y) is the Dirac delta in R
2. While not assuming any particular biological

process that is responsible for this memory effect (such as a slime mold), equa-
tion (1), simply means that bacteria “mark” the trajectories in R

2 on which they
travel.

Remark 1. The experimental evidence indicates that the surface memory effect
does not diffuse over time or diffuses very slowly (this is definitely the case for
the time frame in which the movies are taken, i.e., several hours). Equation (1) is
therefore written without a diffusion term. In the context of Section 3, mainly due
to technical reasons, we will add a diffusion term to the stochastic process L. In
either case, it can be assumed to be negligible.

Remark 2. It would probably be more realistic to assume the external substance
is produced in a continuous manner, rather than by a pure jump process. However,
in the setting of the multi-particle system discussed in Section 3, this difference
does not play an important role. Also, according to our assumptions, the quantity
of such a substance should quickly increase when it is in contact with bacteria (up
to a certain level). Hence, even from practical considerations, when simulating the
model, the best way to discretize this process is according to (1).

The second process is the “excitation process”. We denote the excitation process
for particle i by Si and let µi(t) be a weighted average of the total excitation in a
given neighborhood of particle i at time t. An example of such a function µi(t) is

µi(t) =
1

N

N
∑

j=1

[

(

1 −
d(Xj(t),Xi(t))

2

)+

Sj(t)

]

,

where d(·, ·) is the Euclidean distance between the points, and (a)+ denotes the
positive part of a. We will assume that Si(t) is given by a geometric mean-reverting
process

dSi(t)

Si(t)
= (µi(t) − Si(t))dt+ σdWi(t), (2)

where σ is constant (a property of the bacteria) and Wi, i = 1, . . . , N are indepen-
dent Brownian motions.

With µi(t) and Si(t) defined this way we know that Si(t) > 0 for all t ≥ 0
and also that Si(t) tends to move towards the mean reverting level µi(t). Hence,
controlling µi(t) will implicitly control Si(t) (in particular, if µi is bounded then
the same will hold for Si almost surely).

The third process is the position process, Xi(t). Here, the motion towards light
should be taken into account. We thus assume that ξt is a unit vector that represents
the direction from which bacteria sense the light at time t. Together with the
bacteria sensitivity to the surface memory, this can be encoded into a C∞ function
q : R

+
0 × R

+
0 × R

2 → [0, 1] satisfying

1. q is strictly increasing in the first two variables.
2. lims→∞ q(s, ·, ·) = 1.
3. q(0, ·, ·) = 0.

We can thus define

dXi(t) = vsq
(

(Si(t) −K)+, L(t;x, y),∇LN (t;x, y)
)

ξtdt+ vrdW̃i(t), (3)
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where W̃i(t) are independent 2-dimensional Brownian motions and vs, vr are the
maximum velocity components for 1) excitation and sensitivity to external sub-
stance, 2) the random phenomena. For each N > 0, LN is the stochastic process
obtained from L by a convolution with a mollifier. Equation (3) is designed in a
way that guarantees that bacteria tend to move in the direction of light only if
the excitation exceeds the predetermined threshold K. In such cases, the surface
memory effect is also taken into account in the overall motion towards light. If the
excitation of an individual bacterium does not pass the threshold K, the only mech-
anism that controls its motion is a random phenomenon. This model thus accounts
for sensitivity to the extra substance, sensitivity to light, and random phenomena.

Remark 3. In order to take into account the possibility of time periods without
any light, the processes Si(t) can be changed by either making them decay fast
when the light source is not present or even by making them jump to values below
the threshold K at the moment the light source vanishes.

Remark 4. The main difference between our model of phototaxis and the chemo-
taxis model of Stevens [18] resides in the existence of the excitation quantity, which
is an internal property of each bacteria. Equation (2) has the desired effect that an
individual’s excitation will evolve towards a surrounding neighborhood trend (given
by µi(t)). The excitation serves as a mechanism for taking into account the group
dynamics. The threshold that the excitation must pass in order to initiate a motion
toward light serves as a way for encoding the observed delay in the response of the
bacteria to light.

2.3. Numerical Simulations. We used the model described in Section 2.2 to sim-
ulate the behavior of this bacteria population. The simulation is done by discretizing
(1), (2) and (3) for small time increments. The functions and parameters that were
used in our simulations are: ∆t = 0.1, σ = 0.3, K = 0.1, vs = 3.0, vr = 0.05, and
q(s, w, v) = α(w, v)

(

1− exp(−s)
)

, where α(w, v) = max{w, v · ξt, 0.2}. For the sake
of brevity, we refer to [5] for the details of the discretizations of the model equations.

In Figures 4, 5, 6 we show snapshots at different times of a bacteria motion in
the direction of a light source that is located to the left of the domain. Bacteria
surrounded by a higher number of individuals tend to move faster.

Under certain conditions, one can localize the bacteria to a point that there is
a seemingly unlimited growth in their density. One possible mechanism to obtain
such a result is to change the direction of the light source in time in a way that
collapses all the particles into a small area. This is the result of a higher percentage
of surface being marked, as well as an uniformly high density of particles. In this
way, particles are allowed to move faster, and thus concentrating on small areas.
Such an example is shown in Figure 7. In this simulation we start with 5000 bacteria
that are normally distributed in R

2. The light changes its direction according to
the iterations indicated in Table 1. Figure 7 shows the snapshots taken at iterations
100, 140, 230, and 360.

In some experiments it was observed that the tip of a finger can separate from
the rest of the finger. This “pinching” phenomenon as obtained in our numerical
simulations, is demonstrated in Figure 8. This sequence shows the tip detaching,
shortly after a finger is formed. This effect is a result of a mixture of areas of lower
and higher density of particles. Although the finger is formed due to a high density
of particles, there are not enough particles on the back of the domain to keep up
with the forming tip, leading to its detachment.



GROUP DYNAMICS OF PHOTOTAXIS 7

(a) (b)

(c) (d)

Figure 4. A simulation of a bacteria motion towards the light
source, on the left. The initial distribution has one area with high
density and one area with low density.

(a) (b)

(c) (d)

Figure 5. A simulation of a bacteria motion towards the light
source, on the left. The initial distribution is composed of two
Gaussians.
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iteration 0 − 100 − 140 − 230 − 280 − 330 − 370 − 400

direction | ← | ↓ | → | ↑ | ← | ↓ | → |

Table 1. Iterations and directions bacteria tend to move to. For
example, between iterations 230 and 280 bacteria sense the light
from the top of the domain and consequently tend to move upwards.

(a) (b)

(c) (d)

Figure 6. A simulation of a bacteria motion towards the light
source, on the left. The initial distribution is of particles that are
uniformly distributed on lines. The radius of the neighborhood
in which the bacteria adjusts its excitation equals to the distance
between two vertical lines.

3. From a Many-Particle System to a System of PDEs. Our main goal is
to derive a continuum model that resembles the stochastic method (1)–(3). The
general technique will closely follow the methodology of [18] and [14]. The first
step is to create an interacting many-particle system in which all populations are
represented by particles. Clearly, the individual bacteria can be easily thought of
as particle. To this set we will also add excitation particles and surface particles
(that will describe the surface memory effect).

3.1. A Particle System. We consider an initial population of approximately N
particles that can move in R

2, die, or give birth to new particles. As the initial
population size N tends to infinity, we rescale the interaction between individuals
in a moderate way. This means that the instantaneous change of a particular
particle depends on the configuration of the remaining particles in a neighborhood,
which is macroscopically small and microscopically large. That is, the volume of
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(a) (b)

(c) (d)

Figure 7. Localizing the bacteria by changing the direction of
the light source in time. Figures (a)–(d) correspond to iterations
100,140, 230, and 360.

(a) (b)

(c) (d)

Figure 8. A detaching tip shortly after a finger forms.

such neighborhood tends to 0 as N → ∞ and it contains an arbitrarily large number
of particles as N → ∞.

Given N ∈ N, we consider a set of N particles (located in R
2) that are divided

into three subpopulations: bacteria, excitation and surface. From now on, these
subpopulations will be denoted by the indices u (bacteria), v (excitation), and l
(surface). Denote by M(N, r, t), where r = u, v, l, the set of all particles belonging
to population of type r at time t. We also denote the total number of particles at
time t by M(N, t) =

⋃

r=u,v,lM(N, r, t).

For k ∈ M(N, t), let P k
N (t) ∈ R

2 denote the position of particle k at time t.
We would like to emphasize that particle k can be either a bacterium particle, and
excitation particle, or a surface particle. We then consider the measure valued
processes

t→ SN,r(t) =
1

N

∑

k∈M(N,r,t)

δP k

N

(t), (4)

where r = u, v, l and δx denotes the Dirac measure at x ∈ R
2.

Excitation was initially defined as a property of an individual bacteria. Hence,
excitation particles should be associated with a particular bacterium. We therefore
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have to be particularly careful with the numbering of the excitation particles in the
set M(N, v, t). To that end, define Mw(N, v, t) ⊂M(N, v, t) as the set of excitation
particles that are associated with bacterium w ∈ M(N,u, t). For any bacterium
w ∈M(N,u, t) we can then define the measure valued process

t→ SN,v,w(t) =
∑

k∈Mw(N,v,t)

δP k

N

(t). (5)

Equation (5) is the sum over all the excitation particles that are associated with
that bacterium. Note that since {Mw(N, v, t)}w∈M(N,u,t) is a partition ofM(N, v, t),

then SN,v(t) = 1
N

∑

w∈M(N,u,t) SN,v,w(t).

3.2. Densities. We now introduce smoothed versions of the empirical processes
above. For a fixed symmetric and sufficiently smooth function W1 (see [14] for
technical conditions on this function), let

WN (x) = α2
NW1(αNx), ŴN (x) = α̂2

NW1(α̂Nx),

where αN = Nα/2 and α̂N = N α̂/2 for fixed scaling exponents α and α̂. We also
introduce a sequence δN = N−δ. Given an arbitrarily small ρ > 0, we assume α, α̂,
and δ satisfy

α̂ ≤
δ

3
and 2δ(1 + 2ρ) < α <

2

5
(6)

We are now ready to define for r = u, v, l

sN,r(t, x) = (SN,r(t) ∗WN ∗WN )(x),

ŝN,r(t, x) = (SN,r(t) ∗WN ∗ ŴN )(x),
(7)

and, for w ∈M(N, v, t),

sN,v,w(t, x) = (SN,v,w(t) ∗WN ∗WN )(x),

ŝN,v,w(t, x) = (SN,v,w(t) ∗WN ∗ ŴN )(x).
(8)

The functions defined in (7) and (8) formally represent the density or concen-
tration of each subpopulation near x at time t. We introduce two density versions
of each type (s and ŝ) for technical reasons that will be made clear later. A more
thorough discussion and technical details can be found in [14]. Finally, we define
the following auxiliary functions that will play a major role in the analysis below

VN (x) = (WN ∗WN ) (x),

hN,r(t, x) = (SN,r(t) ∗WN ) (x),
(9)

for r = u, v, l. Note that the definition (9) implies that sN,r(t, x) = (hN,r(t)∗WN )(x)

and ŝN,r(t, x) = (hN,r(t) ∗ ŴN )(x).

3.3. Dynamics. Existing particles can move (in R
2), and they can also cause dis-

continuous changes to the population, i.e., they can die or give birth to new particles.
We start with describing the motion of particles. In what follows, {W k(t)}k∈M(N,t)

are independent 2-dimensional Brownian motions. For the bacteria particles we let
(for t ≥ 0)

dP k
N (t) =g

(

ŝN,v,k(t, P k
N (t)), ŝN,l(t, P

k
N (t)),∇sN,l(t, P

k
N (t))

)

dt+
√

2µdW k(t)

:=gk
N

(

t, P k
N (t)

)

dt+
√

2µdW k(t), ∀k ∈M(N,u, t).
(10)
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Here, gk
N (t, x) = g (ŝN,v,k(t, x), ŝN,l(t, x),∇sN,l(t, x)) (compare with (3)). The exci-

tation particles move together with the bacterium they are associated with. Hence,
we impose

dP k
N (t) = dPw

N (t), ∀k ∈Mw(N, v, t). (11)

Finally, for the surface memory particles, we have

dP k
N (t) =

√

2ηdW k(t), ∀k ∈M(N, l, t), (12)

We assume that η is a small positive constant, so that the surface memory effect
diffuses at a slow rate.

We assume that any bacteria particle k ∈M(N,u, t) at position P k
N (t) = y may

induce discontinuous changes in the excitation (v) and surface (l) subpopulations;
namely they give birth to surface (type l) particles, with intensity λN (t, y), and
they give birth to excitation (type v) particles, with intensity βN,k(t, y). We also
assume that any excitation particle, k ∈ M(N, v, t) at position P k

N (t) = y, may
cause the death of excitation particles, with intensity γN,k(t, y). (This is equivalent
to saying that the death rate of the excitation particles is proportional to the density
of these particles). These intensities are assumed to depend on the densities of the
N -particle system, i.e.,

βN,k(t, x) = β(ŝN,v,k(t, x), ŝN,u(t, x), ŝN,v(t, x)),

γN,k(t, x) = γ(ŝN,v,k(t, x), ŝN,u(t, x), ŝN,v(t, x)),

λN (t, x) = λ(ŝN,u(t, x), ŝN,l(t, x)).

(13)

These birth and death processes are given as

βk
N (t) = Qβ,k

N

(
∫ t

0

1M(N,u,τ)(k)βN,k(τ, P k
N (τ))dτ

)

,

γk
N (t) = Qγ,k

N

(
∫ t

0

1M(N,v,τ)(k)γN,k(τ, P k
N (τ))dτ

)

, (14)

λk
N (t) = Qλ,k

N

(
∫ t

0

1M(N,l,τ)(k)λN (τ, P k
N (τ))dτ

)

,

where Q
·

N are independent standard Poisson processes. Thus the point processes
βk

N (t), γk
N (t), λk

N (t) for a jump of size 1 at time t, have intensities 1M(N,u,τ)(k)βN,k(t, P k
N (t)),

1M(N,u,t)(k)γN,k(t, P k
N (t)), and 1M(N,u,t)(k)λN (t, P k

N (t)).

3.4. The Limit Dynamics. In this section we present a heuristic derivation of the
limit dynamics of the particle system (10)–(14). The idea is to use Itô’s formula on
the processes (10), (11) and (12) to obtain integral systems for SN,r(t), r = u, v, l.
At this point we take the limit when N → ∞ and arrive at an integral system for
the densities r(t, ·) corresponding to SN,r(t). The phototaxis system follows after
integrating by parts the limit integral system. At this stage, the transition to the
limit densities will be formal. This connection will be rigorously established in the
following sections.
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Using Itô’s formula on (10), we obtain for f ∈ C1,2
b (R+ × R

2) and bacterium
k ∈M(N,u, t),

f
(

t, P k
N (t)

)

=f
(

0, P k
N (0)

)

+

∫ t

0

√

2µ∇f
(

τ, P k
N (τ)

)

· dW k(t)

+

∫ t

0

[

∇f
(

τ, P k
N (τ)

)

· gk
N

(

τ, P k
N (τ)

)

+ ∂τf
(

τ, P k
N (τ)

)

+ µ∆f
(

τ, P k
N (τ)

)

]

dτ.

(15)

In order to simplify (15) we define the functional T k
N : C1,2

b (R+ × R
2) → R by

T k
N (ϕ) = ∇ϕ

(

τ, P k
N (τ)

)

· gk
N

(

τ, P k
N (τ)

)

+ ∂τϕ
(

τ, P k
N (τ)

)

+ µ∆ϕ
(

τ, P k
N (τ)

)

. (16)

Thus, (15) reads

f
(

t, P k
N (t)

)

= f
(

0, P k
N (0)

)

+

∫ t

0

T k
N (f)dτ +

∫ t

0

√

2µ∇f
(

τ, P k
N (τ)

)

· dW k(t). (17)

Let 〈µ, f〉 =
∫

R2 f(x)µ(dx) for any measure µ and real-valued function f in R
2.

In order to study the limit behavior of the bacteria particles, we are interested in
computing 〈SN,r(t), f(t, ·)〉. Since there are no births or deaths of type u particles,

〈SN,u(t), f(t, ·)〉 = 〈SN,u(0), f(0, ·)〉 +
1

N

∫ t

0

∑

k∈M(N,u,τ)

T k
N (f)dτ

+
1

N

∫ t

0

∑

k∈M(N,u,τ)

√

2µ∇f
(

τ, P k
N (τ)

)

· dW k(t)

(18)

For the excitation particles, i.e., k ∈M(N, v, t), we have to take into account birth
and decay. The motion of the excitation particles follows the motion of the bacteria
particles (see (11)). Thus

〈SN,v(t), f(t, ·)〉 =
1

N

∑

k∈M(N,v,t)

f
(

t, P k
N (t)

)

+ birth/decay terms

=
1

N

∑

k∈M(N,u,t)

SN,v,w(τ)
(

P k
N (τ)

)

f
(

t, P k
N (t)

)

+ birth/decay terms.

(19)

Hence,

〈SN,v(t), f(t, ·)〉 = 〈SN,v(0), f(0, ·)〉 +
1

N

∫ t

0

∑

k∈M(N,u,τ)

SN,v,w(τ)
(

P k
N (τ)

)

T k
N (f)dτ

(20)

+
1

N

∫ t

0

∑

k∈M(N,u,τ)

SN,v,w(τ)
(

P k
N (τ)

)
√

2µ∇f
(

τ, P k
N (τ)

)

· dW k(t)

+
1

N

∫ t

0

∑

k∈M(N,u,τ)

f
(

τ, P k
N (τ)

)

βk
N (dτ) −

1

N

∫ t

0

∑

k∈M(N,v,τ)

f
(

τ, P k
N (τ)

)

γk
N (dτ).
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Finally, for the surface particles we have (see (12)):

〈SN,l(t), f(t, ·)〉 = 〈SN,l(0), f(0, ·)〉 +
1

N

∫ t

0

∑

k∈M(N,l,τ)

T k
N (f)dτ

+
1

N

∫ t

0

∑

k∈M(N,l,τ)

√

2η∇f
(

τ, P k
N (τ)

)

· dW k(t)

+
1

N

∫ t

0

∑

k∈M(N,u,τ)

f
(

τ, P k
N (τ)

)

λk
N (dτ).

(21)

To deal with the random components of the dynamics, we introduce the processes

MN
r (t, f) =

1

N

∫ t

0

∑

k∈M(N,r,t)

√

2µ∇f
(

τ, P k
N (τ)

)

· dW k(t), r = u, v, l,

MN
v,γ(t, f) =

1

N

∫ t

0

∑

k∈M(N,u,τ)

f
(

τ, P k
N (τ)

) (

γk
N (dτ) − γN,k

(

τ, P k
N (τ)

)

dτ
)

,

MN
v,β(t, f) =

1

N

∫ t

0

∑

k∈M(N,v,τ)

f
(

τ, P k
N (τ)

) (

βk
N (dτ) − βN,k

(

τ, P k
N (τ)

)

dτ
)

,

MN
l,λ(t, f) =

1

N

∫ t

0

∑

k∈M(N,u,τ)

f
(

τ, P k
N (τ)

) (

λk
N (dτ) − λN

(

τ, P k
N (τ)

)

dτ
)

.

(22)

The processes defined in (22) are martingales with respect to the natural filtration
generated by the processes t →

(

P k
N (t),1M(N,r,t)(k)

)

1
k
N (t) where 1k

N (t) is the in-
dicator function of the lifetime of individual k. If we assume that the quadratic
variation of these martingales tends to 0 as N → ∞, they can be neglected when
passing to the limit dynamics.

From Section 3.2, we see that in the sense of distributions,

lim
N→∞

WN = lim
N→∞

ŴN = δ0.

For r = u, v, l and t ≥ 0 we assume that in some sense (similarly to [18] and [14]),

lim
N→∞

SN,r(t) = Sr(t),

where the measures Sr(t) have a smooth density r(t, ·). It follows that

lim
N→∞

sN,r(t, ·) = lim
N→∞

ŝN,r(t, ·) = r(t, ·),

and

lim
N→∞

∇sN,r(t, ·) = lim
N→∞

∇ŝN,r(t, ·) = ∇r(t, ·).

Let u0(·), v0(·) and l0(·) be the densities of Su(0), Sv(0) and Sl(0). Define
λ∞(τ, x) = λ(u(τ, x), l(τ, x)) as the growth rate of surface memory at x ∈ R

2 at
time τ . In order to define g∞, β∞ and γ∞, we assume that as N → ∞, the total
excitations of bacteria (w and w̃) that are close with respect to the size of the
interaction domain should be close to each other. That is, if |Pw

N (t) − P w̃
N (t)| is

small compared to the domain of interaction then

|Mw(N, v, t)| ≃ |Mw̃(N, v, t)|.
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Thus, in the limit as N → ∞, SN,v,w(t) should be approximated by the number of
excitation particles at Pw

N (t) divided by the number of bacteria particles at Pw
N (t),

i.e.

SN,v,w(t)(Pw
N ) ≃

∑

k∈Sv(N,t) δP k

N

(Pw
N )

∑

k∈Su(N,t) δP k

N

(Pw
N )

=
SN,v(t)(Pw

N )

SN,u(t)(Pw
N )
,

which, in turn, implies that

lim
N→∞

ŝN,v,x(t) =
v(t, x)

u(t, x)
.

Hence, we get g∞(τ, ·) = g
(

v(τ,·)
u(τ,·) ,∇l(τ, ·),∇u(τ, ·)

)

, γ∞(τ, ·) = γ
(

v(τ,·)
u(τ,·) , u(τ, ·), v(τ, ·)

)

,

and β∞(τ, ·) = β
(

v(τ,·)
u(τ,·) , u(τ, ·), v(τ, ·)

)

. We can now formally take the limit and

obtain

〈u(t, ·), f(t, ·)〉 = 〈u0(·), f(0, ·)〉

+

∫ t

0

〈

u(t, ·),∇f(τ, ·) · g∞ (τ, ·) + ∂τf(τ, ·) + µ∆f(τ, ·)
〉

dτ

〈v(t, ·), f(t, ·)〉 = 〈v0(·), f(0, ·)〉

+

∫ t

0

〈

v(t, ·),∇f(τ, ·) · g∞ (τ, ·) + ∂τf(τ, ·) + µ∆f(τ, ·)
〉

dτ

+

∫ t

0

〈u(t, ·), β∞(τ, ·)f(τ, ·)〉 dτ −

∫ t

0

〈v(t, ·), γ∞(τ, ·)f(τ, ·)〉dτ

〈l(t, ·), f(t, ·)〉 = 〈l0(·), f(0, ·)〉

+

∫ t

0

〈

l(t, ·), ∂τf(τ, ·) + η∆f(τ, ·)
〉

dτ

+

∫ t

0

〈u(t, ·), λ∞(τ, ·)f(τ, ·)〉 dτ.

(23)

Integrating (23) by parts we obtain the system










∂tu =µ∆u−∇ ·
(

g(v/u, l,∇l)u
)

,

∂tv =µ∆v −∇ ·
(

g(v/u, l,∇l)v
)

+ β(v/u, u, v)u− γ(v/u, u, v)v,

∂tl =η∆l + λ(u, l)u,

(24)

which we rewrite as










∂tu =µ∆u−∇ ·
(

g(u, v, l,∇l)u
)

,

∂tv =µ∆v −∇ ·
(

g(u, v, l,∇l)v
)

+ β(u, v)u− γ(u, v)v,

∂tl =η∆l + λ(u, l)u.

(25)

with a new function g that replaces the function g in (24). From now on, we will
refer to the system (25) as the phototaxis system.

Remark 5. The structure of the system (25) is not surprising, We expect the rate
of change on bacteria density u to be given by a diffusion part (originating from
the Brownian motion) plus an advection term that captures the sensitivity to light
and the external substance. Similarly, the excitation density v, can be expected
to follow the same motion pattern as u and hence an identical velocity, with the



GROUP DYNAMICS OF PHOTOTAXIS 15

addition of birth and decay terms. The surface is marked proportionally to the
motion of the bacteria, with a weak diffusion term.

Remark 6. The phototaxis system (25) is similar to the classical chemotaxis system
{

∂tu =µ∆u−∇ ·
(

χ(u, v)u∇v
)

∂tl =η∆l + λ(u, l)u− κ(u, l)l
(26)

where u is the bacteria density and v is the density of chemo-attractant. The main
difference in our case is the existence of an internal property, which shows up in the
system (25) as a quantity that closely follows the dynamics of the bacteria u (plus
the additional birth and decay terms).

Remark 7. Our derivation is based on the assumption that, asN → ∞, |Mw(N, v, t)| ≃
|Mw̃(N, v, t)| if Pw

N (t) = P w̃
N (t). That is, as N → ∞, our model looks like a reaction-

diffusion system, which allows us to use the methods discussed in [18] and [14]. As
mentioned above, when rescaling the interaction in a moderate way, we are looking
at neighborhoods that are microscopically large. Hence, as N → ∞, we expect to
have an arbitrarily large number of individuals in such neighborhoods.

Remark 8. Comparing with the model introduced in Section 2.2, arriving at pos-
sible functions for g and λ is fairly easy. In fact one can use function q with minor
modifications in place of g. For β and γ one needs to be somewhat careful as
these functions regulate the dynamics of v. In particular β and γ must lead to
v
u bounded, and well defined as u approaches 0. A possible choice is β(u, v) = 0
whenever v > Cu for some fixed constant C, and γ(u, v) large enough when u ap-
proaches zero in order to guarantee smoothness of v

u . This choice for β guarantees
boundedness of v

u , while the choice for γ ensures v approaches zero sufficiently fast
when u approaches zero.

3.5. Limit Theorems. In this section we proceed with the formal approach cor-
responding to the description given in Sec. 3.4. This approach follows closely the
work of Stevens [18], and Oelschläger [14]. The idea is to consider an intermediate
system (see (27) below), and show the solution for this system is in some sense close
to both the solution for the phototaxis system and the limit of SN,r as N → ∞.
The precise statements are given in Theorems 3.1, 3.2, and 3.3. Theorem 3.1 as-
serts that the solution for (27) converges to the solution of the phototaxis system
in the | · |[0,T ] introduced below. Theorem 3.2 shows that the difference between the

solution for (27) and a smoothed version of the processes SN,r is approaching zero
as N → ∞. Finally, Theorem 3.3 combines the results from the previous theorems
to conclude the desired result.

Before stating the main results, we will outline some technical assumptions. We
assume that W1 is a symmetric probability density (as in [18]). These are reasonable
assumptions as a Gaussian probability density satisfies them. Since sN,r and ŝN,r

are given by a convolution with WN and ŴN , we have the estimate
∣

∣

∣

∣

∣

∣

∣

∣

∂k1+k2

(∂x1)k1(∂x1)k2

ŝN,r

∣

∣

∣

∣

∣

∣

∣

∣

C0

≤ C(k1, k2)〈SN (t), 1〉α̂2+k1+k2

N ,

where k1, k2 ∈ N, t ≥ 0.
We also assume that the following quantities are positive, µ, η, σ > 0; that the

function g is continuously differentiable and bounded together with its derivatives;
that β, γ, λ are continuously differentiable and bounded together with its derivatives;
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and that u0, v0, l0 ∈ C∞
b (R2) with 〈u0, ψ〉, 〈v0, ψ〉, 〈l0, ψ〉 ≤ C for ψ(x) = log(2 +

x2), x ∈ R
2. The form of this function as identical to the one in [18]. Finally,

we assume that for some T > 0, the phototaxis system (24) has a unique positive
solution u, v, l ∈ C∞

b ([0, T ] × R
2,R) ∩ C0([0, T ], L2(R

2)) such that v/u is also in
C∞

b ([0, T ] × R
2,R) ∩ C0([0, T ], L2(R

2)).
Denote by ||·||2 the L2-norm in R

2 and define

|f |[0,T ] = sup
t≤T

||f ||
2
2 +

∫ T

0

||∇f ||
2
2 dt,

for any function f ∈ C0([0, T ], L2(R2)) ∩ L2([0, T ], L2(R2)). We also define for all
positive measures ν1, ν2 on R

2,

d(ν1, ν2) = sup{〈ν1 − ν2, f〉 : f ∈ C1
b (R2), ||f ||C0 + ||∇f ||C0 ≤ 1}.

We are now ready to consider the system














∂tûN =∇ ·
(

µ∇ûN − ĝN ûN

)

,

∂tv̂N =∇ ·
(

µ∇v̂N − ĝN v̂N

)

+ β̂N ûN − γ̂N v̂N ,

∂t l̂N =η∆l̂N + λ̂N ûN ,

(27)

subject to the initial data ûN (0, x) = ûN0(x), v̂N (0, x) = v̂N0(x), and l̂N (0, x) =

l̂N0(x). Here, ĝN (t, x) = g
(

(ûN (t, ·)∗ŴN )(x), (v̂N (t, ·)∗ŴN )(x), (l̂N (t, ·)∗ŴN )(x),∇(ûN (t, ·)∗

ŴN )(x)
)

, βN (t, x) = β
(

(ûN (t, ·)∗ŴN )(x), (v̂N (t, ·)∗ŴN )(x)
)

, and γN (t, x), λN (t, x)
are defined in a similar way. We assume that the system (27) has a unique positive

solution ûN , v̂N , l̂N ∈ C1,∞
b ([0, T ] × R

2,R) ∩ C0([0, T ], L2(R
2)) such that v̂N/ûN

also belongs to C1,∞
b ([0, T ] × R

2,R) ∩ C0([0, T ], L2(R
2)). Under these conditions,

the theorems from [18] that were formulated for the chemotaxis system hold also
for the phototaxis system:

Theorem 3.1. If ûN0, v̂N0, l̂N0 ∈ C∞
b (R2) and

lim
N→∞

||ûN0 − u0||
2
2 + ||v̂N0 − v0||

2
2 + ||l̂N0 − l0||

2
2 = 0, (28)

then the solutions for (27) are uniformly bounded with respect to N in the associated

norm and

lim
N→∞

|ûN − u|[0,T ] + |v̂N − v|[0,T ] + |l̂N − l|[0,T ] = 0. (29)

Theorem 3.2. Assume that the initial distributions of particles are converging

lim
N→∞

P
[

||hN,u(0, ·) − ûN0||
2
2 + ||hN,v(0, ·) − v̂N0||

2
2 (30)

+||hN,l(0, ·) − l̂N0||
2
2 ≥ δ1+2ρ

N

]

= 0,

and that the number of particles grows in a controlled way, i.e.,

lim
n→∞

sup
N∈N

P [〈SN (0), 1〉 ≥ n] = 0. (31)

Then

lim
N→∞

P
[

|hN,u − ûN |[0,T ] + |hN,v − v̂N |[0,T ] + |hN,l − l̂N |[0,T ] ≥ δN

]

= 0, (32)

where ûN , v̂N , l̂N is the unique solution for (27).
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Theorem 3.3. Assume that the initial distribution of particles is controlled in the

limit

lim
n→∞

sup
N∈N

P [〈SN,u(0), ψ2〉 + 〈SN,v(0), ψ2〉 + 〈SN,l(0), ψ2〉 ≥ n] = 0, (33)

where ψ(x) = log(2 + x2). Then SN,r converge in probability to the corresponding

densities, i.e., for δ > 0,

lim
N→∞

P

[

sup
t≤T

d(SN,u(t), u(t, ·)) + sup
t≤T

d(SN,v(t), v(t, ·)) (34)

+ sup
t≤T

d(SN,l(t), l(t, ·)) ≥ δ

]

= 0.

Theorem 3.3 gives us the desired result, i.e., the phototaxis system (24) is the
limit as N → ∞ for the particle systems whose dynamics is defined by (10), (11),
and (12).

The proofs of these theorems follow the arguments in [18]. The main difference
is in the proof of Theorem 3.2. This proof requires adjustments to some of the
estimates in [18]. In Section 4 we sketch the proof of Theorem 3.2. We do not
provide the proofs for Theorems 3.1 and 3.3 . The proof of Theorem 3.1 is similar
to the one for Theorem 3.2, where estimates to |r̂N − r|[0,T ] are obtained in the same

way as in Sec. 4.2. Theorem 3.3 is a consequence of the first two theorems, and its
proof can be repeated by following the arguments in [18] with minor modifications.

4. A Sketch of the Proof of Theorem 3.2. Generally, the proof follows the
arguments of [18] with some necessary adjustments that are outlined below. For
technical reasons, we will need to consider the following system











∂tuN =∇ ·
(

µ∇uN − gNuN

)

,

∂tvN =∇ ·
(

µ∇vN − gNvN

)

+ βNuN − γNvN ,

∂tlN =η∆lN + λNuN ,

(35)

subject to the initial data uN (0, x) = uN0(x), vN (0, x) = vN0(x), and lN (0, x) =
lN0(x). Here, gN (t, x) = g (ŝN,v(t, x)/ŝN,u(t, x),∇sN,l(t, x),∇sN,u(t, x)) and βN (t, x),
γN (t, x), and λN (t, x) are defined analogously. Note that gN , βN , γN , and λN don’t
depend directly on uN , vN , or lN . This is the phototaxis system with frozen non-
linearities. We assume that this system has a unique regular solution uN , vN , lN .

The system (35) will be used to show that for a suitable stopping time TN ,

lim
N→∞

P
[

|hN,u − uN |[0,TN ] + |hN,v − vN |[0,TN ] + |hN,l − lN |[0,TN ] ≥ δ1+ρ
N

]

= 0.

We will also determine that

lim
N→∞

P

[

|uN − ûN |[0,TN ] + |vN − v̂N |[0,TN ] + |lN − l̂N |[0,TN ] ≥
δN
2

]

= 0,

and using a triangle inequality, conclude with the desired result of Theorem 3.2.
Following our previous assumptions, we assume that the difference between

ŝN,v,u(t, x), ŝN,v(t, x)/ŝN,u(t, x), and v(t, x)/u(t, x) converge to zero sufficiently fast
when N → ∞. A consequence of this assumption is that

|(gk
N − gN )(t, x)| ≤ AN (t, x) ||∇g||C0 (36)

where ||AN ||2 → 0 sufficiently fast as N → ∞. The same estimate holds when g is
substituted for β or γ. Another consequence of such assumption is that the quantity
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v(t, x)/u(t, x) is bounded and goes to zero as u(t, x) goes to zero. In particular, we
must have

∣

∣

∣

∣

∣

∣

∣

∣

v(t, x)

u(t, x)
−
v(t, y)

u(t, y)

∣

∣

∣

∣

∣

∣

∣

∣

2

2

≤ C ||u(t, x) − u(t, y)||
2
2 . (37)

We assume this behavior is valid for both systems (27) and (35). Essentially, such
an assumption is reasonable as one expects the excitation to tend to zero (at a
certain rate) in location where the density of bacteria also tends to zero.

Due to the hypothesis (31) and the fact that β is a bounded function, we have

lim
n→∞

sup
N∈N

P [sup
τ≤T

〈SN (τ), 1〉 ≥ n] = 0. (38)

This means the number of particles is in some sense controlled up to time T . Note
that the quantity 〈SN (τ), 1〉 is the total number of particles at time τ divided by N ,
so (38) really means that the ratio between the number of particles for the N -system
and N is bounded almost surely.

Based on (38), it is natural to consider the following stopping times

T̃n
N (ω) = inf

{

τ > 0
∣

∣

∣
sup
σ≤τ

〈SN (σ), 1〉(ω) > n

}

.

Note that (38) is valid if one substitutes T with any T̄ <∞. In particular, defining1

Tn
N := T ∧ T̃n

N , one has limn→∞ P [Tn
N > T ] = 1, so we just need to show that

lim
N→∞

P
[

|hN,u − ûN |[0,T n

N
] + |hN,v − v̂N |[0,T n

N
] + |hN,l − l̂N |[0,T n

N
] ≥ δN

]

= 0 (39)

in order to conclude with (32). To that end consider the hitting time

tN (ω) =
{

τ > 0
∣

∣

∣

(

|hN,u − ûN |[0,τ ] + |hN,v − v̂N |[0,τ ] + |hN,l − l̂N |[0,τ ]

)

(ω) ≥ δN

}

.

For any stopping time T0 = T0(ω), denote [0, T0] = {τ ∧ T0 : τ ≥ 0}. With this
notation and from the definition of tN we have

P
[

|hN,u − ûN |[0,T n

N
] + |hN,v − v̂N |[0,T n

N
] + |hN,l − l̂N |[0,T n

N
] ≥ δN

]

= P
[

|hN,u − ûN |[0,T n

N
∧tN ] + |hN,v − v̂N |[0,T n

N
∧tN ] + |hN,l − l̂N |[0,T n

N
∧tN ] ≥ δN

]

≤ P
[

|hN,u − uN |[0,T n

N
∧tN ] + |hN,v − vN |[0,T n

N
∧tN ] + |hN,l − lN |[0,T n

N
∧tN ] ≥ δ1+ρ

N

]

+ P

[

|uN − ûN |[0,T n

N
∧tN ] + |vN − v̂N |[0,T n

N
∧tN ] + |lN − l̂N |[0,T n

N
∧tN ] ≥

δN
2

]

. (40)

The inequality above comes from using triangle inequality and from noting that for

N large, δ1+ρ
N = N−δ(1+ρ) < N−δ

2 = δN

2 . We need to estimate the right side of (40)
in order to achieve (39). Those estimates rely on uniform boundedness with respect
to N of supt≤T n

N
∧tN

||ŝN,r(t, ·)||C2 . This is a consequence of Theorem 3.1 and was

done in [18].
We note that (40) brings the system (35) into play. As mentioned above, the

idea for the proof is to show the solution of (35) is close to hN,r and also to the
solution to (27). We first look at the first term on the right-hand side of (40). In
what follows, t ≤ Tn

N ∧ tN .

1the notation ∧ means a ∧ b = min{a, b}
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4.1. Estimates for |hN,r − rN|[0,Tn

N
∧tN]. In order to obtain an estimate for the

first term on the right-hand side of (40), we will first look at ||hN,r(t, ·) − rN (t, ·)||
2
2,

for r = u, v, l. We have

||hN,r(t, ·) − rN (t, ·)||
2
2 = 〈hN,r(t, ·), hN,r(t, ·)〉 − 2 〈hN,r(t, ·), rN (t, ·)〉

+ 〈rN (t, ·), rN (t, ·)〉 .
(41)

We first note that

〈hN,r(t, ·), hN,r(t, ·)〉 =
1

N2

∑

k,l∈M(N,r,t)

VN (P k
N (t) − P l

N (t))

+
terms resulting from discontinuities
in the size of population r.

(42)

and look at each of the populations u, v, and l. Following the arguments of [18]
with the necessary adjustments due to the new terms of the form gk

N − gN , for the
bacteria particles (type-u) one can obtain the upper bound

sup
t≤T̃∧T n

N
∧tN

||hN,u(t, ·) − uN (t, ·)||
2
2 ≤ ||hN,u(0, ·) − uN (0, ·)||

2
2

− 2

∫ T̃∧T n

N
∧tN

0

µ
∣

∣

∣

∣

∣

∣
∇
(

hN,u(τ, ·) − uN (τ, ·)
)∣

∣

∣

∣

∣

∣

2

2
dτ

+ CC̃

∫ T̃∧T n

N
∧tN

0

sup
σ≤τ

||hN,u(σ, ·)AN (σ, ·)||
2
2 dτ

+ CC̃

∫ T̃∧T n

N
∧tN

0

sup
σ≤τ

||hN,u(σ, ·) − uN (σ, ·)||
2
2 dτ

+
C

C̃

∫ T̃∧T n

N
∧tN

0

||∇ (hN,u(τ, ·) − uN (τ, ·))||
2
2 dτ

+ CC̃T̃ 〈SN,u(0), 1〉
2
exp(−C ′αε

N ) + CC̃α2ε−2
N

∫ T̃∧T n

N
∧tN

0

||uN (τ, ·)||
2
2 dτ

+
C

N
α4

N T̃ 〈SN,u(0), 1〉 + sup
t≤T̃∧T n

N
∧tN

|MN,u(t)| .

(43)

Here,

MN,u(t) =
2

N

∫ t

0

∑

k∈M(N,u,τ)

√

2µ∇
(

sN,u − uN (τ, ·) ∗WN

)

(

τ, P k
N (τ)

)

· dW k(τ)

is a martingale with respect to {Fτ∧T n

N
∧tN

}τ∈[0,T ].

Note that on the RHS of (43), besides the terms in ||hN,r(t, ·) − rN (t, ·)||
2
2 and

||∇ (hN,u(t, ·) − uN (t, ·))||
2
2, all the other terms tend to zero as N → ∞. This

happens due to (36), the initial choice for the coefficients αN , and the martingale
inequality above.
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For the excitation particles (type-v), the following estimate holds:

sup
t≤T̃∧T n

N
∧tN

||hN,v(t, ·) − vN (t, ·)||
2
2 ≤ ||hN,v(0, ·) − vN (0, ·)||

2
2

− 2

∫ T̃∧T n

N
∧tN

0

µ
∣

∣

∣

∣

∣

∣
∇
(

hN,v(τ, ·) − vN (τ, ·)
)∣

∣

∣

∣

∣

∣

2

2
dτ

+ C

∫ T̃∧T n

N
∧tN

0

C̃ sup
σ≤τ

||hN,u(σ, ·)AN (σ, ·)||
2
2 + sup

σ≤τ
||AN (σ, ·) ∗WN ||

2
2 dτ

+ CC̃

∫ T̃∧T n

N
∧tN

0

sup
σ≤τ

||hN,u(σ, ·) − uN (σ, ·)||
2
2 dτ + C

∫ T̃∧T n

N
∧tN

0

sup
σ≤τ

||hN,v(σ, ·) − vN (σ, ·)||
2
2 dτ

+
C

C̃

∫ T̃∧T n

N
∧tN

0

||∇ (hN,u(τ, ·) − uN (τ, ·))||
2
2 dτ

+ CC̃T̃ sup
τ≤T̃

〈SN (τ ∧ Tn
N ), 1〉

2
exp(−C ′αε

N ) + CC̃α2ε−2
N

∫ T̃∧T n

N
∧tN

0

||vN (τ, ·)||
2
2 dτ

+
C

N
α4

N T̃ sup
τ≤T̃

〈SN (τ ∧ Tn
N ), 1〉 + C

α2
N

N
T̃ sup

τ≤T̃

〈SN,v(τ ∧ Tn
N ), 1〉

+ sup
t≤T̃∧T n

N
∧tN

|MN,v(t)| + sup
t≤T̃∧T n

N
∧tN

∣

∣

∣
Mβ,0

N,v(t)
∣

∣

∣
+ sup

t≤T̃∧T n

N
∧tN

∣

∣

∣
Mβ,1

N,v(t)
∣

∣

∣

+ sup
t≤T̃∧T n

N
∧tN

∣

∣

∣
Mγ,0

N,v(t)
∣

∣

∣
+ sup

t≤T̃∧T n

N
∧tN

∣

∣

∣
Mγ,1

N,v(t)
∣

∣

∣
.

(44)

Here, Mβ,0
N,v(t) is a martingale with respect to the filtration {Fτ∧T n

N
∧tN

}τ∈[0,T ].
defined as

Mβ,0
N,v(t) =

1

N2

∫ t

0

∑

k∈M(N,u,τ)

VN (0)
(

βk
N (dτ) − βN,k

(

τ, P k
N (τ)

)

dτ
)

.

Finally, for the type-l particles, from the dynamics defined in Sec. 3.3, after
given birth type-l particles behave in a similar way to type-v particles except for
the terms involving g. This means the estimates for population l are exactly the
same estimates as the ones obtained for type-v particles without the terms in g and
without the death terms.

Combining the estimates for all three types of particles (u, v, and l), for ε < 1
2 ,

C̃ large enough, and N large we conclude

∑

r=u,v,l

[

sup
t≤T̃∧T n

N
∧tN

||hN,r(t, ·) − rN (t, ·)||
2
2 +

∫ T̃∧T n

N
∧tN

0

∣

∣

∣

∣

∣

∣
∇
(

hN,r(τ, ·) − rN (τ, ·)
)
∣

∣

∣

∣

∣

∣

2

2

]

is less or equal than the sum of the right hand sides of (43), (44), and the expres-
sion that is the analog of (44) for type-l particles. Using Gronwall’s inequality on
this expression one gets, for some new C̄ depending on n, T , and all the previous
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constants,

P
[

E
[

|hN,u − uN |[0,T n

N
∧tN ] + |hN,v − vN |[0,T n

N
∧tN ]

+ |hN,l − lN |[0,T n

N
∧tN ]

]

≥ C̄δ1+2ρ
N

]

≤ P
[

||hN,u(0, ·) − uN (0, ·)||
2
2 + ||hN,l(0, ·) − lN (0, ·)||

2
2

+ ||hN,l(0, ·) − lN (0, ·)||
2
2 + α−1

N ≥ Cδ1+2ρ
N

]

< ǫ(N),

where ǫ(N) when N → ∞ (this is because of the assumptions on the constants α,
δ, and the assumptions for time t = 0). It follows that

lim
N→∞

P
[

|hN,u − uN |[0,T n

N
∧tN ] + |hN,v − vN |[0,T n

N
∧tN ]

+ |hN,l − lN |[0,T n

N
∧tN ] ≥ δ1+ρ

N

]

= 0.

4.2. Estimates for |rN − r̂N|[0,Tn

N
∧tN]. We now estimate the second term on the

RHS of (40). Like before, we first look at ||rN − r̂N ||
2
2. Since

∂t 〈uN − ûN , uN − ûN 〉 = 2 〈uN − ûN , ∂t(uN − ûN )〉

we get

||uN (t, ·) − ûN (t, ·)||
2
2 = ||uN (0, ·) − ûN (0, ·)||

2
2

+ 2

∫ t

0

〈

uN (τ, ·) − ûN (τ, ·),∇ ·
(

µ∇
(

uN (τ, ·) − ûN (τ, ·
)

)〉

dτ

− 2

∫ t

0

〈

uN (τ, ·) − ûN (τ, ·),∇ ·
(

gN (τ, ·)uN (τ, ·) − ĝN (τ, ·)ûN (τ, ·)
)〉

dτ

= ||uN (0, ·) − ûN (0, ·)||
2
2 − 2µ

∫ t

0

∣

∣

∣

∣∇
(

uN (τ, ·) − ûN (τ, ·)
)∣

∣

∣

∣

2

2
dτ

− 2

∫ t

0

〈

∇
(

uN (τ, ·) − ûN (τ, ·
)

, gN (τ, ·)
(

uN (τ, ·) − ûN (τ, ·)
)〉

dτ

− 2

∫ t

0

〈

∇
(

uN (τ, ·) − ûN (τ, ·
)

,
(

gN (τ, ·) − ĝN (τ, ·)
)

ûN (τ, ·)
〉

dτ.

(45)

Since g is bounded, the second integral on the RHS of (45) is bounded by

C

∫ t

0

C̃ ||uN (τ, ·) − ûN (τ, ·)||
2
2 +

1

C̃

∣

∣

∣

∣∇
(

uN (τ, ·) − ûN (τ, ·)
)∣

∣

∣

∣

2

2
dτ,

and an estimate for the last integral is

C

∫ t

0

[

C̃

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ŝN,v(τ, ·)

ŝN,u(τ, ·)
−
v̂N (τ, ·) ∗ ŴN

ûN (τ, ·) ∗ ŴN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

+ C̃
∣

∣

∣

∣

∣

∣
∇
(

ŝN,l(τ, ·) − l̂N (τ, ·) ∗ ŴN

)
∣

∣

∣

∣

∣

∣

2

2

+
1

C̃

∣

∣

∣

∣∇
(

uN (τ, ·) − ûN (τ, ·)
)
∣

∣

∣

∣

2

2

]

dτ.

(46)
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From previous assumptions (46) is bounded by

C

∫ t

0

[

C̃
∣

∣

∣

∣

∣

∣
ŝN,u(τ, ·) − ûN (τ, ·) ∗ ŴN

∣

∣

∣

∣

∣

∣

2

2
+

+ C̃
∣

∣

∣

∣

∣

∣
∇
(

ŝN,l(τ, ·) − l̂N (τ, ·) ∗ ŴN

)∣

∣

∣

∣

∣

∣

2

2
+

1

C̃

∣

∣

∣

∣∇
(

uN (τ, ·) − ûN (τ, ·)
)
∣

∣

∣

∣

2

2

]

dτ,

(47)

and one can estimate ||vN (t, ·) − v̂N (t, ·)||
2
2 and ||lN (t, ·) − l̂N (t, ·)||22 the same way.

Also,

||lN (t, ·) − l̂N (t, ·)||22 ≤
∣

∣

∣

∣

∣

∣
lN (0, ·) − l̂N (0, ·)

∣

∣

∣

∣

∣

∣

2

2

− 2η

∫ t

0

∣

∣

∣

∣

∣

∣
∇
(

lN (τ, ·) − l̂N (τ, ·
)

∣

∣

∣

∣

∣

∣

2

2
dτ + C

∫ t

0

||uN (τ, ·) − ûN (τ, ·)||
2
2 dτ

+ C

∫ t

0

∣

∣

∣

∣

∣

∣
ŝN,u(τ, ·) − ûN (τ, ·) ∗ ŴN

∣

∣

∣

∣

∣

∣

2

2
+
∣

∣

∣

∣

∣

∣
ŝN,l(τ, ·) − l̂N (τ, ·) ∗ ŴN

∣

∣

∣

∣

∣

∣

2

2
dτ

leads to

∣

∣

∣
lN (t, ·) − l̂N (t, ·)

∣

∣

∣

[0,T n

N
∧tN ]

≤ C

∫ t

0

||uN (τ, ·) − ûN (τ, ·)||
2
2 dτ

+ C

∫ t

0

∣

∣

∣

∣

∣

∣
ŝN,u(τ, ·) − ûN (τ, ·) ∗ ŴN

∣

∣

∣

∣

∣

∣

2

2
+
∣

∣

∣

∣

∣

∣
ŝN,l(τ, ·) − l̂N (τ, ·) ∗ ŴN

∣

∣

∣

∣

∣

∣

2

2
dτ,

(48)

which has no term in
∣

∣

∣

∣

∣

∣
∇
(

ŝN,l(τ, ·) − l̂N (τ, ·) ∗ ŴN

)
∣

∣

∣

∣

∣

∣

2

2
. This is an important fact,

because since

∣

∣

∣

∣

∣

∣
∇
(

ŝN,r(τ, ·) − r̂N (τ, ·) ∗ ŴN

)∣

∣

∣

∣

∣

∣

2

2
≤
∣

∣

∣

∣

∣

∣
∇
(

hN,r(τ, ·) − r̂N (τ, ·)
)∣

∣

∣

∣

∣

∣

2

2

≤
∣

∣

∣

∣

∣

∣
∇
(

hN,r(τ, ·) − rN (τ, ·)
)
∣

∣

∣

∣

∣

∣

2

2
+
∣

∣

∣

∣

∣

∣
∇
(

rN (τ, ·) − r̂N (τ, ·)
)
∣

∣

∣

∣

∣

∣

2

2
,

we can use the above estimate (48) to bound the terms in
∣

∣

∣

∣

∣

∣
∇
(

ŝN,l(τ, ·) − l̂N (τ, ·) ∗ ŴN

)∣

∣

∣

∣

∣

∣

2

2

coming from the estimates for ||uN (t, ·) − ûN (t, ·)||
2
2 and ||vN (t, ·) − v̂N (t, ·)||

2
2. Hence,
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for T̃ ≤ T , and assuming C̃ > 1, we have

∑

r=u,v,l

[

sup
t≤T̃∧T n

N
∧tN

||rN (t, ·) − r̂N (t, ·)||
2
2

+

∫ T̃∧T n

N
∧tN

0

∣

∣

∣

∣

∣

∣
∇
(

rN (τ, ·) − r̂N (τ, ·)
)∣

∣

∣

∣

∣

∣

2

2
dτ

]

≤ CC̃
∑

r=u,v,l

||rN (0, ·) − r̂N (0, ·)||
2
2

+ C

∫ t

0

C̃ ||uN (τ, ·) − ûN (τ, ·)||
2
2 +

1

C̃

∣

∣

∣

∣∇
(

uN (τ, ·) − ûN (τ, ·)
)
∣

∣

∣

∣

2

2
dτ

+
1

C̃

∑

r=u,v,l

∫ T̃∧T n

N
∧tN

0

∣

∣

∣

∣

∣

∣
∇
(

rN (τ, ·) − r̂N (τ, ·)
)∣

∣

∣

∣

∣

∣

2

2
dτ

+ C̃
∑

r=u,v,l

∫ T̃∧T n

N
∧tN

0

sup
σ≤τ

||rN (σ, ·) − r̂N (σ, ·)||
2
2 dτ

+ C̃T̃
∑

r=u,v,l

sup
t≤T̃∧T n

N
∧tN

||sN,r(t, ·) − rN (t, ·)||
2
2

+ C̃

∫ T̃∧T n

N
∧tN

0

∣

∣

∣

∣

∣

∣
∇
(

sN,l(τ, ·) − lN (τ, ·)
)∣

∣

∣

∣

∣

∣

2

2
dτ.

Thus for for C̃ large, one gets using Gronwall’s inequality,

P





∑

r=u,v,l

|rN (t, ·) − r̂N (t, ·)|[0,T n

N
∧tN ] >

δN
2





≤ P

[

C̃eC̃T n

N

(

∑

r=u,v,l

||rN (0, ·) − r̂N (0, ·)||
2
2 +

∑

r=u,v,l

sup
t≤T n

N
∧tN

||sN,r(t, ·) − rN (t, ·)||
2
2

+

∫ T̃∧T n

N
∧tN

0

∣

∣

∣

∣

∣

∣
∇
(

sN,l(τ, ·) − lN (τ, ·)
)
∣

∣

∣

∣

∣

∣

2

2
dτ

)

>
δN
2

]

≤ P

[

C̃eC̃T n

N

(

∑

r=u,v,l

||rN (0, ·) − r̂N (0, ·)||
2
2

+
∑

r=u,v,l

|sN,r(t, ·) − rN (t, ·)|[0,T n

N
∧tN ]

)

>
δN
2

]

.

From the result in 4.1 and the assumptions for t = 0, this quantity goes to zero as
N → ∞. Thus the second term of (40) is valid and (32) follows.

5. Conclusion. In this paper we have derived a hierarchy of models for describing
the motion of phototaxis. The novelty of our approach was in assuming that the
motion of the colony of bacteria strongly depends on group dynamics, rather on
decisions made by individual bacteria. The postulated group dynamics (whose
existence is evident in the experimental data) was incorporated into the models
through the excitation property.

The phototaxis system (24) we obtained, resembles the known chemotaxis system
The main differences between both systems are related to both the existence of an
internal property, and the restrictions imposed on the parameter functions. For
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example, in the phototaxis system it is assumed that the velocity is bounded. This
is not the case with the chemotaxis system.

While the analysis presented in this paper closely follows the methods of [14, 18]
the additional excitation property, who really is a property of every individual
bacteria, adds another layer of difficulty to the analysis. From an analytical point
of view, the phototaxis system does pose several difficulties as there is a system-wide
dependence on v/u and g depends on ∇l in a nonlinear manner.

The method used in this paper works only for a diffusing surface memory effect.
The details of the analysis as presented here do not allow sensitivity function g to
depend on any derivative besides ∇l. It would be interesting to study the effects of
adding such terms into the phototaxis system, i.e., a system of the form











∂tu =µ∆u−∇ ·
(

g(u, v, l,∇u,∇l)u
)

,

∂tv =µ∆v −∇ ·
(

g(u, v, l,∇u,∇l)v
)

+ β(u, v)u− γ(u, v)v,

∂tl =λ(u, l)u.

Such a system will allow, e.g., to directly consider a motion of the bacteria that
tends towards areas of a large density of bacteria.

An extensive simulation study of the stochastic model to determine the depen-
dency of the results on the values of the different parameters and on the choice of
the response functions is currently under way and will be separately reported in [5].

Finally, it will be very interesting to see if the phototaxis system (24) does support
the formation of some of the structures that are observed experimentally, such as
the fingers and the pinching. This may depend on the choice of parameter functions,
such as g, β, and γ. Such a study is beyond the scope of this introductory paper
and is left to a future work.
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