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A hierarchical model for surface effects on chain conformation
and rheology of polymer solutions. II. Application to a neutral surface

Vlasis G. Mavrantzasa) and Antony N. Berisb)

Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716

~Received 29 July 1998; accepted 23 September 1998!

In this part, the general formulation described in Part I is applied to the modeling of the behavior
of a dilute polymer solution near a purely repulsive, planar solid surface, i.e., near a noninteracting
wall. The static equilibrium problem is considered first. The model equations here reduce to a
minimization problem for the Helmholtz free energy of the system, which results into the well
known equilibrium condition that the chemical potentials of all chain conformations in the
interfacial area should be equal to each other. The numerical results show that the loss of polymer
conformational entropy in the interfacial region gives rise to a strong polymer depletion which
extends up to a distance about three times the equilibrium root-mean-square polymer end-to-end
distance. Next, the problem of a polymer solution flowing past the wall is investigated. Here, the full
model equations need to be considered; these are solved numerically with a spectral collocation
technique. The numerical results show that the flow field enhances polymer depletion phenomena
near the wall relative to those observed under equilibrium~static! conditions: By increasing the
shear stress, the polymer concentration in the interfacial area decreases, in full agreement with
available experimental data. Moreover, the flow field is found to affect significantly the chain
conformations near the wall: The applied shear stress is seen to extend the chains along a primary
direction, j, and to depress them in the transverse direction,h. The depletion of the interfacial
region in polymer molecules is further seen to lead to the formation of a boundary layer close to the
wall, where the macroscopic fluid velocity increases rapidly from its zero value exactly at the wall
to its asymptotic bulk profile, resulting into an apparent macroscopic slip at the wall. The
theoretically calculated slip coefficient is found to be of the same order of magnitude with the
experimentally measured one, as reported in the literature for a dilute polymer solution of
polymethylacrylate flowing near a glass surface@H. Mueller-Moehnssenet al., J. Rheol.34, 223
~1990!#. © 1999 American Institute of Physics.@S0021-9606~99!50801-5#
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I. INTRODUCTION

In Part I1 we have addressed the problem of model
the behavior of a polymer solution over a solid surface un
both equilibrium~static! and nonequilibrium~flowing! con-
ditions. The analysis was based on the Hamiltonian form
lation of transport phenomena2–9 in systems characterized b
a complex internal microstructure in the framework of t
generalized bracket formalism.6 In particular, in Part I we
showed how to systematically account for the presence
multiple length scales by deriving macroscopic equatio
which couple, through the use of selected internal field v
ables with the system microstructure. This hierarchical
proach is shown to lead to a natural coupling of the mac
scopic flow equations with the microscopic cha
conformation, through the system HamiltonianH. In particu-
lar, we showed that the velocity field and the chain conc
tration should vary in response, among other things, of g
eralized forces dictated by the nonequilibriu
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thermodynamics of the chain conformation. In return, t
chain conformation changes in response to changes in
velocity and concentration field. The single, most importa
quantity describing these macro–micro interactions is see
be the generalized propagatorG8, accounting for the distri-
bution function for the chain end-to-end vector under flo
conditions, used in the definition of the system Hamiltonia

The present approach presents a refinement of our
vious work10 on slip phenomena developed during the flo
of polymer solutions near a noninteracting surface~a wall!,
where a Gaussian form had been assumed for the distribu
function for the chain end-to-end distance vector everywh
in the flow domain, even at microscopic distances from
wall. Here, this assumption is removed, and instead, a s
consistent mean-field approach is followed, based on the
dom flight chain model, which allows us to describe cons
tently chain conformation changes near the wall due to
macroscopically imposed flow field. This also permits redu
ing the length scale of analysis of microscopic deformatio
from distances commensurate with the average end-to
chain length~which is the minimum length scale for whic
the previously assumed Gaussian approximation was va!
down to distances commensurate with the length of the
peat~polymer segment! unit.
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The work is similar to the approach followed by Ploe
and Russel11 in their study of the conformational propertie
of a polymer solution near a solid surface under equilibri
conditions through a continuum model. Although both t
segment and the polymer chain density~and not only the
segment volume fraction as was done in the Ploehn and R
sel model11! are used in the present work in the express
for the extended free energy of the system, both approa
represent the same continuum description of the discrete
tice model of Scheutjens–Fleer,12 and they naturally reduce
to that in the limit of very long chains. As we will see
however, the present methodology is much more general
fundamental, and allows us to extend these previous wo
to flowing conditions as well.

As already mentioned above, the single, most importa
quantity describing the coupling between macro–micro
teractions in our approach is the propagatorG8(R1r0 ,N
21;r0 ,a), which shows how the distribution function fo
the N-bead long chain end-to-end vectorR is altered due to
the imposed flow field in they direction, characterized by th
apparent strain tensora. To specify G8(R1r0 ,N
21;r0 ,a), in Part I of the paper,1 a microscopic model was
invoked, whose equations define the statistics of chain c
formations near the surface consistently with the impo
flow field through the concept of the apparent strain tensoa.
The apparent strain tensora defines how the conformationc0

of a polymer molecule which has already been altered by
solid surface is augmented due to the flow field, through

c5a•c0•aT. ~1!

The propagatorG8(R1r0 ,N21;r0 ,a! defines the probabil-
ity for a chain with its start at the pointr05(x0 ,y0 ,z0! above
the boundary to have an end-to-end vectorR, given that the
apparent strain tensor isa. With the use ofa and G8(R
1r0 ,N21;r0 ,a), a complete, closed set of macroscopi
microscopic equations has been derived for the macrosc
quantities of interest, which can be solved numerically a
function of the imposed flow field. Such quantities inclu
the polymer concentration, the overall polymer chain conf
mation, and the velocity profile in the flow domain near t
solid boundary. The structure of the rest of this paper is
follows: In Sec. II, the governing equations are presented
a steady-state simple shear flow over a stationary, nonin
acting solid surface. The solution for static equilibrium
presented in Sec. III, mainly for validation purposes but a
for comparison with the general~under flow! case which is
presented in Sec. IV. The concluding remarks and a dis
sion of the most significant points are presented in Sec.

II. MODEL EQUATIONS

The governing equations consist of the concentrat
equation, the momentum equation along the flow and
shear directions,x andy, respectively, and the three cons
tutive equations for the three unknown components of
conformation tensorcxx , cyy , andcxy . To get the final form
of these equations, it is always helpful to keep in mind t
things:~a! That all variables, i.e., the chain-end number de
sity n1,e , the velocityv, the pressurep, and the conformation
tensorc vary only along one direction, the shear directiony
Downloaded 26 Jan 2005 to 128.101.10.146. Redistribution subject to AI
s-
n
es
t-

nd
ks

t,
-

n-
d

e

ic
a

-

s
r
r-

o

s-
.

n
e

e

-

perpendicular to the surface, and~b! that only one velocity
component is nonzero, the componentnx , which according
to ~a! varies only along they direction, i.e.,nx5nx(y), so
that the flow kinematics is

nx5nx~y!,

ny50, ~2!

nz50.

Then the macroscopic governing equations, Eqs.~11!–
~16! of Part I, become as follows: The concentration equ
tion becomes

¹yP1
]hi

]y
2

dsyy

dy
50, ~3!

where

P[n1,e

dHi

dn1,e
1C:

]hi

]C
2hi ~4!

is the osmotic pressure,

s[2C•

]hi

]C
~5!

is the stress tensor, and

hi~y0!

r0kBT

5us2wsxsd~y0!1
1

2
n1,e~y0!lnFn1,e~y0!

2

N

Z~N21,y0!G
1~12w~y0!!ln~12w~y0!!1xw~y0!~12w~y0!!

2
1

2
n1,e~y0!E

0

` G~R1r0 ,N21;y0!

Z~N21,y0!

3 lnFG8~R1r0 ,N21;y0 ,a!

Z8~N21,y0 ;a!

Z~N21,y0!

G~R1r0 ,N21;y0!Gd3R

~6!

is the internal part of the Helmholtz free energy density.
extensively discussed in Part I,n1,e(y! andw(y! are not in-
dependent quantities but are related to each other through
integral constraint

w~y!5 (
n50

N21 E
0

` 1

2
n1,e~y0!G8~y,n;y0 ,a!

3
Z8~N212n,y;a!

Z8~N21,y0 ;,a!
dy0 . ~7!

In Eq. ~6! r0 is the~constant! segment and solvent molecu
number density,kB the Boltzmann’s constant,T the tempera-
ture, us the adsorption energy of a solvent molecule inkBT
units, ws the polymer segment surface fraction represent
the chain segments adsorbed to the surface~it is zero when
no polymer adsorption takes place!, xs the surface energy o
adsorbed polymer molecules,d(y! the Dirac delta function,
andZ8(N21,y;a! the partition function
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Z8~n,y0 ;a![E
0

`

G8~y,n;y0 ,a!dy. ~8!

Note that in Eq.~6! the nonprimed propagator and partitio
function refer to the static equilibrium values~i.e., whena
51, the unit tensor! of the corresponding primed quantitie
Also note that in the above and the following, whenever
symbols r and r0 , or their equivalentsy and y0 , present
dummy variables, they are used interchangeably in the e
tions.

The x component of the momentum equation become

syx1hs

dux

dy
5const.5tyx , ~9!

wherehs is the solvent viscosity andtyx the imposed~con-
stant! total shear stress.
The y component of the momentum equation becomes

¹yP1
]hi

]y
2

dsyy

dy
1

dp

dy
50. ~10!

The xx component of the constitutive equation becomes

cxx

]hi

]cxx
1cxy

]hi

]cxy
5S lKr0

n1,e

2 D cxy

dux

dy
. ~11!

The xy component of the constitutive equation becomes

2Fcxx

]hi

]cxy
1cxy

]hi

]cyy
G5S lKr0

n1,e

2 D cyy

dux

dy
. ~12!

And theyy component of the constitutive equation becom

cxy

]hi

]cxy
1cyy

]hi

]cyy
50. ~13!

By subtracting Eq.~3! from Eq. ~10! it is seen that the
pressurep is constant in the flow field. In addition, one ca
readily see from the definition of the stress tensor, Eq.~5!,
that the left-hand-side of Eq.~13! is simply the stress com
ponentsyy ; therefore,syy50, and this implies that only the
componentssxx andsxy of the stress tensors are nonzero;
these are needed in calculating¹yP. Since, in addition, the
part of the internal free energy which is related to flow d
formation is a function of the conformation tensorc through
its dependence on the apparent strain deformation tensa
and not onc directly, the governing equations need first to
transformed from functions ofc to functions ofa. If all this
is done consistently and the final results are nondimens
alized, the governing equations take the following dime
sionless form:
—The momentum equation along thex direction becomes

syx1b
dux

dy
5const.5tyx , ~14!

whereb is the viscosity parameter defined as the ratio of
solvent contribution to the polymer contribution to the to
viscosity in the bulk

b5
hs

r0

n1,b

2
kBTl

5
hs

hp,b
, ~15!
Downloaded 26 Jan 2005 to 128.101.10.146. Redistribution subject to AI
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wherehp,b is the polymer contribution to the viscosity in th
bulk ~l being the characteristic relaxation time of the po
mer!.
—The concentration equation becomes

¹y lnF n1,e~y!

Z~N21,y!G2
] f def

]c
:¹yc50. ~16!

—The three equations for the~three! independent compo
nents of the apparent strain tensor become

cxx

] f def

]a
:

]a

]cxx
1cxy

] f def

]a
:

]a

]cxy
5cxy

dux

dy
, ~17!

2Fcxx

] f def

]a
:

]a

]cxy
1cxy

] f def

]a
:

]a

]cyy
G5cyy

dux

dy
, ~18!

and

cxy

] f def

]a
:

]a

]cxy
1cyy

] f def

]a
:

]a

]cyy
50, ~19!

where f def is the density of the flow contributionhdef to the
internal free energy density, defined as

f def[
hdef

n1,e
. ~20!

Since the flow contribution to the internal free energy dens
is given by the last term in Eq.~6!, i.e., in scaled units

hdef~y0!52n1,e~y0!E
0

` G~R1r0 ,N21;y0!

Z~N21,y0!

3 lnFG8~R1r0 ,N21;y0 ,a!

Z8~N21,y0 ;a!

3
Z~N21,y0!

G~R1r0 ,N21;y0!Gd3R, ~21!

we find that

f def~y0!52E
0

` G~R1r0 ,N21;y0!

Z~N21,y0!

3 lnFG8~R1r0 ,N21;y0 ,a!

Z8~N21,y0 ;a!

3
Z~N21,y0!

G~R1r0 ,N21;y0!Gd3R, ~22!

(r05(x0 ,y0 ,z0! denotes the starting point of the chai!
which shows thatf def is a function only of the tensorc, or
equivalently of a, but not of n1,e . In the above and the
following, the following scaling has been used and th
overbars are dropped:
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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n1,e5
n1,e

n1,b
, cab5

cab

kBT

k

,
dux

dy
5l

dux

dy
,

ȳ5
y

AkBT

k

, G85G8S kBT

k D 3/2

, hi5
hi

r0

n1,b

2
kBT

,

sab5
sab

r0

n1,b

2
kBT

. ~23!

According to this, distances are scaled with the root-me
square equilibrium end-to-end distance in the bulkR0 , i.e.,

R05AkBT

k
, ~24!

and the stresses with the modulus of elasticityG0 of the
polymer solution in the bulk

G05r0

n1,b

2
kBT. ~25!

With this scaling, the characteristic velocity for our syste
of equations is defined by the ratio ofR0 over l:

n05
R0

l
. ~26!

With the exception of the concentration equation, E
~16!, which is an ordinary differential equation, all oth
equations are algebraic. However, even the concentra
equation can be cast in an algebraic form if we make
approximation that

d fdef

dy
'

] f def

]c
:¹yc. ~27!

The validity of this approximation was checked numerica
a posteriori, and was found to introduce a numerical err
always less than 1%. With this approximation, the conc
tration equation, Eq.~16!, becomes

¹yS lnF n1,e~y!

Z~N21,y!G2 f def~c~y!! D50, ~28!

from which it is easily seen that

n1,e~y!5Z~N21,y!exp@ f def~c~y!!2 f defc~`!#. ~29!

In this way, the chain end concentration profile can be c
culated separately after the momentum and constitu
equations have been solved for the velocity gradient and
components of the strain tensora, respectively. As explained
in Part I, in order to close the above system of equations,
needs to knowG8(R1r0 ,N21;y0 ,a!, a task far from
trivial, since, it depends both on the type of the imposed fl
field and the specific interactions between polymer cha
and surface. The next sections of this part will show h
G8(R1r0 ,N21;y0 ,a! can be calculated in the case of
polymer solution in contact with a neutral~purely repulsive!
solid wall. Section III deals with the static equilibrium prob
Downloaded 26 Jan 2005 to 128.101.10.146. Redistribution subject to AI
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the nonequilibrium flow problem where a constant sh
stress is applied on the solution.

III. STATIC EQUILIBRIUM PROFILES

When polymer chains are in contact with a nonintera
ing ~impermeable! wall (xs52`), they experience a de
crease of their entropy due to the loss of conformatio
which cannot survive the imposition of the hard bounda
The decrease of conformational entropy results in an incre
of their free energy, therefore, molecules move away fr
the surface to the bulk. In the following sections, this dep
tion phenomenon will be investigated by solving the mod
equations developed in Sec. II to the case of a quiesc
polymer solution above a solid wall. In this case,a5I ~the
unit tensor!, and the propagatorG8(R1r0 ,N21;y0 ,a! be-
comesG(R1r0 ,N21;y0), i.e., it reduces to its static equ
librium form. To calculateG(R1r0 ,N21;y0), we solve the
corresponding diffusion equation thatG satisfies, Eq.~20! of
Part I.

The description of polymer conformations through a d
fusion equation dates back to the pioneering work
Chandrasekhar13 on the problem of random flights. In it
original formulation this problem is described as follows:
particle undergoes a sequence of random displacem
Dr15r12r0 , Dr2 ,5r22r1 ,..., DrN215rN212rN22 , the
magnitude and direction of each one of which is conside
to be independent of all the preceding ones. The probab
that the position after thei th displacement lies in the ope
sphereur2r i u,dr i is determined by the same unknown di
tribution function assigneda priori. Then the following
question is asked: What is the probabilityZ21G(r ,n;r0)dr
~whereZ is a normalization factor! that aftern displacements
the coordinates of the random walker lie in the open sph
ur2rnu,drn? Under certain assumptions, this problem
random flights is isomorphic to that of polymer chain co
formations. Of course, this case necessarily implies that
probabilities for each chain segment orientation are indep
dent of each other. For certain applications this might b
poor assumption necessitating an extension of the orig
analysis which causes additional difficulties. In particul
substantial difficulties are encountered when exclud
volume effects need to be taken into account. In this case
position and orientation of a link along the polymer cha
depends on the position of not only just the previous one
also of all the others. This explains the quite extensive lite
ture on the subject.14

According to Edwards,14 one way to overcome the com
plexity introduced by excluded-volume effects is by appro
mating the effects of interactions of monomers along
chain by a self-consistent field. Thus, the conformation o
chain is treated as a random walk in the presence of a po
tial field the magnitude of which, in turn, depends on t
random walk realizations. Using the proper normalization
order to build chain statistics, Edwards14 proved that for di-
lute solutionsG(r ,n;r0! is given as the solution to the fol
lowing diffusion equation:
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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]G~r ,n;r0!

]n
5

l 2

6
¹2G~r ,n;r0!2yw~r !G~r ,n;r0!, ~30!

subject to the initial condition

at n50, G~r ,0;r0!5d~r2r0!, ~31!

and boundary conditions dictated by the specification of
problem. In particular, for the problem of chain conform
tions realized in a semi-infinite medium confined by an i
penetrable surface located at they50 plane, the following
boundary conditions apply:

at y5`, G~r ,n;r0!50,
~32!

at y50, G~r ,n;r0!50.

In Eq. ~30!, l is the chain segment length,y the excluded-
volume parameter, defined by

y5E
0

`

~12e2U~r !/kBT!d3r , ~33!

whereU is the potential between two segments separated
a distancer, andw~r ! the segment number fraction at spat
location r .

Although excluded-volume effects can, in general,
addressed by our formalism, the assumption of a dilute p
mer solution here allows us to neglect the potential term
the diffusion equation. This and the assumption of isotrop
ity in the other two directions in whichG remains Gaussian
imply that

G~r ,n;r0!5Gx~x,n;x0!Gy~y,n;y0!Gz~z,n;z0!, ~34!

where, in scaled units

Gx~x,n;x0!5
1

A2pcxx,n
0

expS 2
~x2x0!2

2cxx,n
0 D ~35!

and

Gz~y,n;y0!5
1

A2pczz,n
0

expS 2
~z2z0!2

2czz,n
0 D , ~36!

with ~also in scaled units!

cxx,n
0 5czz,n

0 5
n

N21
, ~37!

whereasGy satisfies

]Gy

]n
5

l 2

6

]2Gy

]y2 , ~38!

with initial and boundary conditions corresponding to Eq
~31! and ~32! above. A point to notice here is that, by co
sidering Eq.~30!, we have implicitly neglected end effect
This is also an important assumption, since, for a Ro
chain ~for example! in a flow field, inner parts of chains ar
much more affected than chain ends.

The solution to the above diffusion problem can
found by the method of images15
Downloaded 26 Jan 2005 to 128.101.10.146. Redistribution subject to AI
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Gy5
1

A2pcyy,n
0 S expF2

~y2y0!2

2cyy,n
0 G2F2

~y1y0!2

2cyy,n
0 G D ,

~39!

where~again in scaled units!

cyy,n
0 5

n

N21
, ~40!

i.e., cyy,n
0 as well ascxx,n

0 andczz,n
0 coincide with the corre-

sponding component of the second moment of the distri
tion function for ann-segment long sub-chain in the bulk. I
writing down Eqs.~39! and ~40!, we have tacitly assumed
that the mean-square end-to-end distance of the poly
chain modelled as a random walk ofN21 steps should be
mapped to the mean-square end-to-end distance of the s
polymer chain imposed by the macroscopic model, that
we have used that

~N21!l 2

3
[

kBT

K
. ~41!

The partition functionZ(n,y0! is found by applying Eq.~8!,
the result being

Z~n,y0!5erfS y0

A2cyy,n
0 D . ~42!

Equilibrium profiles are then calculated by assuming a z
flow field in the governing equations: In particular, by su
stituting Eq.~42! for Z(n,y0! into Eq. ~29! for the concen-
tration of chain end points, and by keeping in mind that, d
to absence of flow effects,hdef5 f def50, we get the follow-
ing result for the profile of chain end points:

n1,e~y!

n1,b
5erfS y

A2cyy,N21
0 D . ~43!

The same result can also be obtained directly from the in
form of the governing equations: If a flow field equal to ze
is assumed, then the model equations boil down to the u
equilibrium condition

dHi

dn1,e
5

dHi

dn1,e
U

b

, ~44!

which simply states that, at equilibrium, the chemical pote
tial of every conformation should be constant everywhere
the domain ~the subscriptb in Eq. ~44! refers to bulk
conditions!.12 Indeed, by neglecting flow effects in the ex
pression for the Volterra derivativedHi /dn1,e , Eq. ~40! of
Part I, and by substituting it back into Eq.~44!, Eq. ~43!
reported above is obtained straightforwardly.

From the calculated ditribution of chain ends, the dens
profile of chain middle points can be found through Eq.~25!
of Part I, while the segment fraction profile can be fou
from Eq. ~7! above. In fact, a closed form expression can
found for w(y! by approximating the summation by a su
able integral for high chain lengthsN; It is found that
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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w~y!

wb
5122S 11

y2

cyy,N21
0 DerfcS y

A2cyy,N21
0 D

1
2&y

Apcyy,N21
0

expS 2
y2

2cyy,N21
0 D

1S 114
y2

cyy,N21
0 DerfcS &y

Acyy,N21
0 D

2
2&y

Apcyy,N21
0

expS 2
2y

Acyy,N21
0 D , ~45!

which is in complete agreement with the findings of Ploe
and Russel11 who did not consider chains in their analys
but probabilistically coupledw(y! to the partition function
Z(N21,y).

The profiles of chain end points, chain middle poin
and polymer segments are shown schematically in Fig
where all quantities have been scaled with their bulk val
The horizontal axis denotes distance from the surface sc
with the equilibrium root-mean-square~rms! polymer end-
to-end distance in the bulkR0 . According to this figure,
starting from their bulk value, alln1,e , n1,m andw decrease
monotonically as the solid surface is approached till th
reach the value zero exactly on the surface. The length s
in all cases is the same, roughly three timesR0 . However,
the degree of depletion is different for the end points than
the middle ones: Indeed, although polymer segments
chain ends seem to suffer the same degree of depletion, c
middle points suffer a stronger depletion than chain e
points. This happens because the conformational loss th
chain undergoes is much higher if its middle rather than
end point is brought closer to the surface: In the second c
chain conformations can still survive by developing perp
dicularly to the wall.

This can be seen more clearly in Fig. 2 where the wi

FIG. 1. The density of chain middle pointsn1,m , chain end pointsn1,e , and
polymer segmentsw as a function of the distancey from the wall scaled with
the root-mean-square equilibrium end-to-end distance in the bulkR0 .
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of the distribution function in the direction perpendicular
the wall, ^RyRy&, is plotted as function of the distance from
the wall of both the end,y0 , and the middle point,ym , of the
chain ~both scaled withR0!. In the first case,̂RyRy& shows
an initial decrease as the chain starts to feel the confin
effects of the solid wall until a minimum is attained, and th
an increase takes place as the chain realizes more and
conformations perpendicularly to the wall. In contrast, wh
the middle point of the chain is brought close to the wa
^RyRy& exhibits a continuous decrease since conformati
can develop only in the parallel direction. As a matter of fa
these trends had also been observed in the previous wo10

where a Gaussian form~centered symbols in Fig. 2! had been
assumed for the distorted from the wall distribution functi
~throughout this paper, we refer to that work asthe Gaussian
approximationdue to the assumption of a Gaussian fo
with a variable width for the polymer end-to-end distributio
function, as compared toexactfor the present work, meaning
that theexact formof the distribution function has been use
in the calculations!. However, the quantitative agreeme
with the results obtained using the exact distribution funct
is seen from the figure to be rather poor. For example, no
that, within the Gaussian assumption,^RyRy& is found to
drop exactly to zero for a chain whose middle point
brought within an infinitesimal distance from the surfa
(ym→0). In contrast, the results with the exact distributi
function show that̂ RyRy& reaches a finite value asym tends
to zero.

IV. NONEQUILIBRIUM „FLOW… PROFILES

In this section, we want to evaluate the changes indu
on the system by imposing a constant shear stresstyx on it.
To do so, we have to take two important steps. The first is

FIG. 2. The component̂RyRy& of the second moment of the distributio
function perpendicular to the wall as a function of the distance from
surface of the chain end point and the chain middle point obtained from
exact solution to the equations. The corresponding results obtained with
use of the Gaussian assumption are also indicated. In all cases, dist
from the wall are scaled with the root-mean-square equilibrium end-to-
distance in the bulkR0 .
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calculate an exact solution for the propagatorG8(R1r0 ,N
21;r0 ,a! of the polymer molecules in the deformed sta
The second is to substitute it into the model equations
solve them for the conformation tensor, the velocity field a
the polymer concentration. To calculateG8, we make the
assumption that, in the deformed state,G8 remains Gaussian
in the neutral directionz, while in the plane of flow (x
2y), it obeys the deformed nonisotropic diffusion equatio
Eq. ~32! of Part I. That is, we make the assumption that

G8~r ,n;r0 ,a!5Gjh8 ~~j,h!,n;~j0 ,h0!,a!Gz8~z,n;z0 ,a!,
~46!

where

Gz85
1

A2pczz,n
0

expS 2
~z2z0!2

2czz,n
0 D , ~47!

exactly as in the equilibrium case, whereasGjh8 satisfies the
following diffusion equation in the space of the eigenvec
directionsj andh of the tensora:

]Gjh8

]n
5D1

]2Gjh8

2j2 1D2

]2Gjh8

]h2 , ~48!

wheren denotes the path length along the chain, andD1 and
D2 are the two chain ‘‘diffusivities’’ driven by the strain
tensora in the eigenvector directionsj andh, respectively.

The transformation from the coordinate system~x,y! to
eigenvector space~j,h! is given by

x5j cosa2h sin a,
~49!

y5j sin a1h cosa,

where the anglea is defined as

tan a5H A~bxx2byy!
214bxy

2 2~bxx2byy!

2bxy
, bxyÞ0

0, bxy50

,

~50!

and the matrixb is given by

b5a2. ~51!

Based on Eq.~33! of Part I, the two diffusivitiesD1 andD2

in Eq. ~48! are simply given~in dimensionless units! by

D15
N21

2
bjj[

N21

2
~ajj!

2,

~52!

D25
N21

2
bhh[

N21

2
~ahh!2.

Equation ~48! needs to be solved together with the sa
initial and boundary conditions as for the equilibrium ca
namely

at t50, G85d~x2x0!d~y2y0!,

at x56`, G850,
~53!

at y50, G850,

at y51`, G850,
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where (x0 ,y0)5(0,y0! is the location of chain origin and
~x,y! the location of chain end in the~x,y! coordinate system

To understand the physical meaning of Eq.~48! and its
role in our formalism, we should notice the following tw
limiting cases: First, far away from any boundary condition
the solution to Eq.~48! is a Gaussian function in the direc
tions j andh with variances proportional to the correspon
ing second moments of the tensorb, as dictated by the ap
plied shear stress, i.e., for the full (N21!-segment long
chain

Gjh8 5
1

A~2p!2bjjbhh

expS 2
~j2j0!2

2bjj
2

~h2h0!2

2bhh
D .

~54!

However, far away from the solid boundary, the equilibriu
value of the macroscopic conformation tensor is the unit t
sor, i.e.,c051 ~in scaled units!; therefore, from Eq.~1!, we
find that, in the eigenvector space, the value of the mac
scopic conformation tensor under the applied flow field ic
5a•aT5a25b ~in scaled units!. By using this into Eq.~54!
and substituting the result into Eq.~21! to calculatehdef, we
obtain that

hdef5
n1,e

2 S 1

2
tr~c!2

1

2
ln det~c! D , ~55!

~in scaled units!, which is exactly the one that produces th
Maxwell model.6,10 Second, in Sec. I, we saw that if flow
effects are neglected and the two diffusivities in thex andy
directions are those dictated by the Kuhn lengthl , then Eq.
~48! reduces to a one-dimensional~1D! diffusion equation,
Eq. ~38! above, in they direction which very nicely repro-
duces the equilibrium profiles. Thus, the proposed equat
Eq. ~48!, constitutes a consistent generalization of the mic
scopic picture underlying the Maxwell model, in order
accommodate inhomogeneous, boundary-condition eff
on chain conformations.

Flow effects in our work are, therefore, taken into a
count indirectly through the evaluation of the two diffusiv
tiesD1 andD2 that define the macromolecular conformatio
thus, eliminating the necessity for the use of a potential fu
tion from the flow field. But the reader should immediate
realize that this indirect accounting is done so as to alw
consistently satisfy the two important limits: First, it satisfi
the equations in the bulk far away from any boundaries, a
second, it satisfies the equilibrium profiles near the bou
ary. In addition, the governing equations always satisfy
criterion of thermodynamic admissibility. In essence, o
work here very much resembles the work of Treloar16 who
also used a strain parameter similar to tensora in order to
define the variance ofc in his work on rubber elasticity. The
present work offers a consistent extension of his work
account for the resulting inhomogeneities due to bound
effects.

The solution to boundary-value problem, Eqs.~48!–~53!,
can be found again by the method of images and for
entire (N21!-segment chain is given by
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Gjh8 5
1

2pAbjjbhh
FexpS 2

~j2j0!2

2bjj
2

~h2h0!2

2bhh
D

2expS 2
~j2j2!2

2bjj
2

~h2h2!2

2bhh
D G , ~56!

where

j25

~12s2!j012sh0AD1

D2

11s2 ,

h25

~s221!h012sj0AD2

D1

11s2 , ~57!

s52AD1

D2
tan a.

The partition function is next found from Eq.~8! as

Z8~y0 ,a![Z8~y0 ,b!5erfS y0

A2byy
D , ~58!

see proof in Appendix B of Ref. 10.
The reader can now immediately see how the bulk lim

Eq. ~55!, can be recovered from Eq.~56!: By letting the
chain origin to lie at a distancey0 far away from the solid
boundary (y0→`), we have that

~j2j2!2@~j2j0!2,
~59!

~h2h2!2@~h2h0!2,

which means that the second term in Eq.~56! is unimportant;
in addition, far away from the wall,c05I , and, as explained
above, thenc5a•aT5a25b. Using these equalities in Eq
~56! gives a Gaussian form forG8, which, in three-
dimensional~3D! space, identically reproduces the Maxwe
model.

Having calculatedG8 andZ8, the resulting model equa
tions, Eqs.~17!–~22!, ~29!, ~56!, and ~58!, can be solved
numerically through a spectral collocation technique, an
zero-order continuation scheme in the shear stresstyx ~start-
ing from the equilibrium profiles!, at a number of fixed
points from the wall. In all cases, an exponential conv
gence was observed in the iteration scheme with the e
tolerance criterion set up at 1026. Representative results fo
the profiles of the quantities of interest are shown in the n
figures for various values of the imposed shear stresstyx and
the viscosity parameterb. For comparison, in every figure
the results obtained with the use of the Gaussian approx
tion for the polymer end-to-end vector as reported in Ref.
are also shown.

In Figs. 3~a! and 3~b! we show typical profiles for the
density of chain middle points for various imposed sh
stress valuestyx and two different values of the parameterb,
0.1 and 0.5, respectively. The use of such relatively sm
values may imply~depending on the molecular paramete
used! strong chain overlaps, which could violate the dilu
polymer solution assumption. These values were simply c
sen in order to enable to comparison with available exp
Downloaded 26 Jan 2005 to 128.101.10.146. Redistribution subject to AI
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mental data. The figures clearly show that the application
the shear stress shifts the equilibrium profiles to the rig
i.e., it enhances the depletion phenomena in the interfa
region. Interestingly enough, this picture is the opposite
that observed with the use of the Gaussian approxima
~upper group of curves in Fig. 3!. Indeed, within the Gauss
ian approximation, the flow-induced shear stress is found
force the chains closer to the wall; furthermore, the qua
tative agreement is quite poor. Notice though that in b
groups of profiles, a limiting curve is reached for hig
enough values oftyx , beyond whichtyx has no effect on the
density profile. In addition, the profiles seem to be qu
insensitive to the viscosity parameterb.

Experimentally, polymer depletion phenomena nea
wall have been studied by Ausserre´ et al.17 through the

FIG. 3. The density of chain middle pointsn1,m as a function of the distance
y from the wall for various shear stressestyx and for two values of the
viscosity parameterb, b50.1 ~a! andb50.5 ~b!, respectively. The distance
y is scaled with the root-mean-square equilibrium end-to-end distance in
bulk R0 . The upper set of curves corresponds to the ‘‘fully Gaussian
proximation’’ whereas the lower set to the ‘‘exact’’ form for the distributio
function near the wall.
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FIG. 4. The component̂RjRj& ~a!, the component̂RhRh& ~b! of the sec-
ond moment of the distribution function perpendicular to the wall, and
tan(a! ~c!, as a function of the distance from the surface of the middle po
of the chain for various shear stressestyx . For the highest value of the shea
stress (tyx50.80), the corresponding results obtained with the use of
Gaussian assumption are also indicated. Alsob50.1. In all cases, distance
from the wall are scaled with the root-mean-square equilibrium end-to-
distance in the bulkR0 .
Downloaded 26 Jan 2005 to 128.101.10.146. Redistribution subject to AI
evanescent-wave-induced-fluorescence technique~EWIF!.
For a dilute aqueous xanthan~a semirigid polysaccharide!
solution above a nonadsorbing silica surface, they found
the shear rate increases the surface excess, which mea
the extent of depletion, relative to that exhibited under eq
librium conditions. On the contrary, the Brownian dynami
simulations of Duering and Rabin18 showed the depletion
phenomena near the wall to decrease with the shear
which agreed with our earlier results based on the assu
tion of a Gaussian distribution function for the polymer s
tistics near the wall. The present work shows that if the ex
distribution function is employed, then the theoretical fin
ings are in agreement with the experimental observation

In Figs. 4~a!–4~c! we show representative results for th
effect of the shear stress on the conformational characte
tics of the polymer chains. As such, we have chosen the
second moments of the distribution function in the eigenv
tor space,̂ RjRj& and^RhRh&, respectively, and the angle o
orientationa. In Fig. 4~a! in particular, we see that, astyx

increases,̂RjRj& increases fast and monotonically. Indee
for a viscosity ratiob50.1 and a shear stress valuetyx

50.8, the chains near the wall are seen to be elongated
about 2 to 3 times than in the bulk of the flow. In contrast
the rapid increase of̂RjRj&, Figs. 4~b! and 4~c! show that
the shear stress has a less dramatic effect on the other
ponent^RhRh& and on the angle of orientationa. In all of
these figures, the centered symbols denote the prediction
the Gaussian approximation.

The next figure, Fig. 5, is very important because
shows the velocity profilenx(y! in the interfacial region. As
can be seen in this figure,nx , starting from the value zero on
the wall, increases quite rapidly in the interfacial region b
fore it reaches bulk characteristics, within a distance from
wall about two times the bulk rms end-to-end distanceR0 . In
the same figure, the results of the Gaussian approxima

e
t

e

d

FIG. 5. The velocitynx as a function of the distancey from the wall for
various shear stressestyx and for b50.1. The corresponding results ob
tained with the use of the Gaussian assumption are also indicated in cen
symbols. The velocity is scaled withR0 /l, wherel is the relaxation time of
the polymer, and the distance withR0 .
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are also represented by the centered symbols: In this c
the qualitative and quantitative agreement of the two
proaches is excellent indeed. This happens because th
locity profile is a secondary rather than a primary quantity
our formalism: It is calculated through a simple integrati
after the velocity gradient, which is the quantity that expl
itly enters into the governing equations, has been de
mined. The agreement is even more striking considering
qualitative and quantitative discrepancy of the Gaussian
proximation for the concentration and conformational p
files. By further extrapolating the bulk velocity profile t
intersect the wall, an apparent slip velocityns can be defined
which can be used to quantify the corresponding hydro
namic boundary layer near the wall. According to Fig. 5,ns

should be a strong function of the viscosity ratio parameteb
and the imposed shear stresstyx . In the next figure, Fig. 6,
we see that the slip velocity is practically a linear function
the shear stresstyx , thus, the ratio of the slip velocity ove
the shear stress, i.e., the~dimensionless! slip coefficientk,
should be a function of only the viscosity ratio parameterb.
Figure 7 shows exactly this dependence: Asb increases,k
decreases fast, and forb.1.0, k is essentially zero. In fact
according to scaling used above, it turns out that the
velocity scales withR0 /l so that the dimensional slip coe
ficient is a function not only ofR0 and b but also of the
polymer viscosityhp,b .

The linear dependence of the slip velocity on the sh
stress has been verified experimentally by Muelle
Moehnssenet al.19 in ducted flows of an electrolyte-free
aqueous solution of a high-molecular-weight, anionic po
acrylamide. Using a laser-differential anemometer and
total-reflection-microscope anemometer, these investiga
were able to measure the velocity profile up to distances
0.15 mm from the wall for a variety of polymer concentra
tions. For the lowest concentration~0.005% wt.!, the mea-

FIG. 6. The slip velocityns as a function of the shear stressestyx for two
values of the viscosity parameterb, b50.1 andb50.5, respectively. The
velocity is scaled withR0 /l and the shear stress with the modulus of ela
ticity of the solutionG05hp,b /l, wherehp,b is the polymer viscosity in the
bulk andl the relaxation time of the polymer.
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surements showed a sharp transition in the velocity profil
very small distances from the wall~on the order of the radius
of gyration of the polymer chains, 0.1mm! from zero to a
finite value. This is the first instance where the appar
character of the slip phenomena has directly been veri
experimentally. Quantitative comparison of their results w
our model predictions, however, is not feasible at the pres
time, because additional electrostatic interactions betw
the charged PMA molecules and an electric double laye
the wall existed in the experiments for which the pres
model cannot account. A rough comparison has neverthe
been attempted where the parameters~data! entering into our
model have been taken from the experimental work
Mueller-Moehnssenet al.19 For the lowest polymer concen
tration ~0.005% wt.! examined in the experiments, the e
perimentally measured slip coefficientk was found to be 4
31023 cm3/dyn/s whereas the model prediction is (0
60.1)31023 cm3/dyn/s. It is seen, therefore, that by simp
accounting for conformational changes near the wall,
enough to capture the correct order of magnitude of the
phenomena. Moreover, the model prediction is lower th
the experimentally measured value, which is quite pleas
because the additional electrostatic repulsions for which
model cannot presently account are expected to enhanc
depletion and slip phenomena in the interfacial area. Fo
more detailed comparison of our results for the velocity fie
with other experimental and available theoretical data
flows through membranes,20–22due to the consistency of th
Gaussian approximation and the exact distribution funct
used in this paper regardingnx(y! andnx , we refer the in-
terested reader to our previous publication.10

V. CONCLUSIONS

The major result of this work is that the shear stress
found to enhance the depletion phenomena near the w
which is in contrast to the previous findings, based on
Gaussian assumption, that the shear stress drives the pol

-

FIG. 7. The dimensionless slip coefficientk as a function of the viscosity
parameterb. The slip coefficient is scaled withR0 /hp,b .
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chains closer to the wall.10 Indeed, the shear stress is foun
to shift the equilibrium profile for the density of chai
middle points to the right which means that it drives cha
further away from the surface. A second prediction of t
new, more detailed work is that the component^RyRy& of the
second moment of the distribution function perpendicular
the wall does not drop to zero exactly on the surface
reaches a finite, nonzero value there; on the contrary,
assumption of a Gaussian distribution function within t
one-fluid model had resulted into a zero value of^RyRy& on
the surface. As regards the velocity profile, however,
results of this and the previous work were found to be
very close agreement. In both models, the development
boundary layer is seen to develop near the wall where
fluid velocity increases rapidly, thus, giving rise to an app
ent slip velocity. Calculated slip velocities were found
depend linearly on the wall shear stress, corresponding, h
ever, to different proportionality~slip! coefficients.

This paper has focused on the depletion phenomena
a wall which offers no attraction to polymer segments. Na
rally, the question arises of how to extend the theory to
count for attractive forces on polymer segments from an
sorbing surface. This issue of the combined surfa
adsorption–flow interaction has been an outstanding prob
in polymer fluid dynamics, mainly because of its great te
nological interest due to the extended use of polymers
stabilizers in many applications. A forthcoming paper w
address exactly this problem, and will further attempt to
clude into the analysis the effects of a solvent shear flow
the adsorbed polymer layer.
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