[ Search | Site Map | Contact ]

Center for Scientific Computation and Mathematical Modeling

Research Activities > Programs > Nonequilibrium Interface Dynamics > Workshop 1


Nonequilibrium Interface Dynamics:
Fundamental Physical Issues in Nonequilibrium Interface Dynamics


CSIC Building (#406), Seminar Room 4122.
Directions: home.cscamm.umd.edu/directions


Dynamics of a Step Edge in Thin Film Growth

Dr. Russel Caflisch

Math Department at UCLA


Abstract:   Epitaxial thin films grow by attachment of adatoms to step edges (or island boundaries). In contrast to the assumptions of classical models, the state of a step edge is typically in a kinetic steady state that is far from equilibrium. This talk presents a detailed model for the dynamics of a step edge, along with analysis of the model in several limits, and a discussion of equilibrium for this system. The model is partially validated by comparison to results from kinetic Monte Carlo simulations. For large adatom diffusion, the asymptotics of this model includes edge diffusion and line tension, which provides an atomistic, kinetic derivation of the Gibbs-Thomson formula.